PHYSICOCHEMICAL, PHARMACOKINETIC AND BIOMEDICAL APPLICATIONS OF THE PHYTOCANNABINOID CANABIGEROL
DOI:
https://doi.org/10.56238/levv16n54-027Keywords:
Medicinal Plants, Cannabis, Cannabinoids, Drug Design, ToxicityAbstract
Cannabigerol (CBG), a non-psychoactive phytocannabinoid from Cannabis sativa, emerges as a highly versatile therapeutic agent, possessing a pharmacological profile distinct from CBD and THC due to its specific interaction with CB1 and CB2 receptors of the endocannabinoid system. This study employed a dual approach, integrating an in silico analysis of CBG properties with an integrative review of its biomedical applications. Computational analysis, performed using PreADMET and SwissADME tools, revealed a promising pharmacokinetic profile, characterized by high lipophilicity (Log P=+5.74), excellent oral bioavailability (93.71%), and adherence to drug similarity rules. CBG demonstrated a high probability of penetrating the central nervous system and a favorable initial safety profile, being predicted to be non-mutagenic and non-carcinogenic. The in silico results strongly correlate with the evidence from the integrative review, which compiled preclinical and clinical studies. The predicted high absorption and action in the CNS supports the anxiolytic and mood-modulating effects observed in humans and animal models. The predicted interaction with cytoplasmic and G protein-coupled receptors (GPCRs) provides a mechanistic basis for its broad spectrum of activities, which includes analgesic (such as the reduction of neuropathic pain), anti-inflammatory, antibacterial, antiviral, and even antitumor actions, as documented in the literature. The convergence between predictive data and experimental evidence validates the potential of CBG and demonstrates that computational tools are fundamental to guiding the rational development of safe and effective pharmaceutical formulations based on this cannabinoid, optimizing its path from the laboratory bench to clinical application.
Downloads
References
AMES, B. N.; GURNEY, E. G.; MILLER, J. A.; BARTSCH, H. Carcinogens as frameshift mutagens: metabolites and derivatives of 2-acetylaminofluorene and other aromatic amine carcinogens. Proceedings of the National Academy of Sciences of the United States of America, v. 69, n. 11, p. 3128–3132, 1972. DOI: https://doi.org/10.1073/pnas.69.11.3128
AQAWI, M.; SIONOV, R.V.; GALLILY, R.; FRIEDMAN, M.; STEINBERG, D. Anti-bacterial properties of cannabigerol toward Streptococcus mutans. Frontiers in Microbiology, v. 12, p. 656471, 2021. DOI: 10.3389/fmicb.2021.656471. DOI: https://doi.org/10.3389/fmicb.2021.656471
ARAKI, A.; KAMIGAITO, N.; SASAKI, T.; MATSUSHIMA, T. Mutagenicity of Carbon tetrachloride and chloroform in Salmonella typhimurium TA98, TA100, TA1535, and TA1537, and Escherichia coli WP2uvrA/ pKM101 and WP2/pKM101, using a gas exposure method. Environmental and Molecular Mutagenesis, v. 43, n. 2, p. 128–133, 2004. DOI: https://doi.org/10.1002/em.20005
CARONE, M.; PREMOLI, M.; BONINI, S. A.; LATSI, R.; MACCARINELLI, G.; MEMO, M. Behavioral effects of two cannabidiol and cannabigerol-rich formulas on mice. Heliyon, v. 10, n. 21, e39938, 2024. DOI: https://doi.org/10.1016/j.heliyon.2024.e39938. DOI: https://doi.org/10.1016/j.heliyon.2024.e39938
CHEN, G. et al. Effect of acute exposure of saxitoxin on development of zebrafish embryos (Danio rerio). Environmental research, v. 185, n. 109432, p. 109432, 2020. DOI: https://doi.org/10.1016/j.envres.2020.109432
CLASSEN, N.; PITAKBUT, T.; SCHÖFBÄNKER, M.; KÜHN, J.; HRINCIUS, E. R.; LUDWIG, S.; HENSEL, A.; KAYSER, O. Cannabigerol and cannabicyclol block SARS-CoV-2 cell fusion. Planta Medica, v. 90, n. 9, p. 717–725, 2024. DOI: https://doi.org/10.1055/a-2320-8822. DOI: https://doi.org/10.1055/a-2320-8822
CONTRERA, J. F.; JACOBS, A. C.; GEORGE, J. J. Carcinogenicity testing and the evaluation of regulatory requirements for pharmaceuticals. Regul Toxicol Pharmacol., v. 25, n. 2, p. 130-45, 1997. doi: 10.1006/rtph.1997.1085 DOI: https://doi.org/10.1006/rtph.1997.1085
CUTTLER, C.; STUEBER, A.; COOPER, Z. D. et al. Acute effects of cannabigerol on anxiety, stress, and mood: a double-blind, placebo-controlled, crossover, field trial. Scientific Reports, v. 14, n. 16163, 2024. DOI: https://doi.org/10.1038/s41598-024-66879-0. DOI: https://doi.org/10.1038/s41598-024-66879-0
DAINA, A.; MICHIELIN, O.; ZOETE, V. SwissTargetPrediction: updated data and new features for efficient prediction of protein targets of small molecules. Nucleic Acids Research, v. 47, n. W1, p. W357–364, 2019. DOI: https://doi.org/10.1093/nar/gkz382
DOLABELA, M. F.; SILVA, A. R. P.; OHASHI, L. H.; BASTOS, M. L. C.; SILVA, M. C. M.; VALE, V. V. Estudo in silico das atividades de triterpenos e iridoides isolados de Himatanthus articulatus (Vahl) Woodson. Revista Fitos, Rio de Janeiro, v. 12, n. 3, p. 227-242, 2018. DOI: https://doi.org/10.17648/2446-4775.2018.602
FERNANDES, E. B. Perfil ADMET de parâmetros farmacocinéticos para apoio à síntese de novos fármacos. 2017. Dissertação (Mestrado em Biofísica e Bionanossistemas) - Faculdade de Ciências, Universidade do Minho, Braga, Portugal, 2017.
GHOSE, A. K.; VISWANADHAN, V. N.; WENDOLOSKI, J. J. Prediction of hydrophobic (lipophilic) properties of small organic molecules using fragmental methods: An analysis of ALOGP and CLOGP methods. Journal of Physical Chemistry A, v. 102, n. 21, p. 3762–3772, 1998. DOI: https://doi.org/10.1021/jp980230o
GLEESON, M. P. Generation of a set of simple, interpretable ADMET rules of thumb. Journal of Medicinal Chemistry, v. 51, n. 4, p. 817–834, 2008. DOI: https://doi.org/10.1021/jm701122q
HARIKA, M. S.; KUMAR, R.; REDDY, S. S. Docking studies of benzimidazole derivatives using HEX 8.0 M. International Journal of Pharmaceutical Sciences and Research, v. 8 n. 4, p. 1677–1688, 2017.
HAYDUK, S. A.; HUGHES, A. C.; WINTER, R. L.; MILTON, M. D.; WARD, S. J. Single and combined effects of cannabigerol (CBG) and cannabidiol (CBD) in mouse models of oxaliplatin-associated mechanical sensitivity, opioid antinociception, and naloxone-precipitated opioid withdrawal. Biomedicines, v. 12, p. 1145, 2024. DOI: https://doi.org/10.3390/biomedicines12061145. DOI: https://doi.org/10.3390/biomedicines12061145
IDAKWO, G.; LUTTRELL, J.; CHEN, M.; HONG, H.; ZHOU, Z.; GONG, P. et al. A review on machine learning methods for in silico toxicity prediction. Journal of Environmental Science and Health, v. 36, n. 4, p. 169-191, 2018. DOI: https://doi.org/10.1080/10590501.2018.1537118
JASTRZĄB, A.; JAROCKA-KARPOWICZ, I.; SKRZYDLEWSKA, E. The origin and biomedical relevance of cannabigerol. International Journal of Molecular Sciences, v. 23, n. 14, p. 7929, 2022. DOI: https://doi.org/10.3390/ijms23147929. DOI: https://doi.org/10.3390/ijms23147929
KINGCADE, A. et al. Morbidity and mortality in Danio rerio and Pimephales promelas exposed to antilipidemic drug mixtures (fibrates and statins) during embryogenesis: Comprehensive assessment via ante and post-mortem endpoints. Chemosphere, v. 263, n. 127911, p. 127911, 2021. DOI: https://doi.org/10.1016/j.chemosphere.2020.127911
KOGAN, N.M.; LAVI, Y.; TOPPING, L.M.; WILLIAMS, R.O.; MCCANN, F.E.; YEKHTIN, Z.; FELDMANN, M.; GALLILY, R.; MECHOULAM, R. Novel CBG derivatives can reduce inflammation, pain and obesity. Molecules, v. 26, p. 5601, 2021. DOI: 10.3390/molecules26185601. DOI: https://doi.org/10.3390/molecules26185601
LAGORCE, D., DOUGUET, D., MITEVA, M. A., & VILLOUTREIX, B. O. Computational analysis of calculated physicochemical and ADMET properties of protein-protein interaction inhibitors. Scientific reports, v. 7, p. 46277, 2017. https://doi.org/10.1038/srep46277 DOI: https://doi.org/10.1038/srep46277
LAGORCE, D.; SPERANDIO, O.; GALONS, H.; MITEVA, M. A.; VILLOUTREIX, B. O. FAF-Drugs2: Free ADME/tox filtering tool to assist drug discovery and chemical biology projects. BMC Bioinformatics, v. 9, p. 1–9, 2008. DOI: https://doi.org/10.1186/1471-2105-9-396
LAH, T.T.; NOVAK, M.; PENA ALMIDON, M.A.; MARINELLI, O.; ŽVAR BAŠKOVIČ, B.; MAJC, B.; MLINAR, M.; BOŠNJAK, R.; BREZNIK, B.; ZOMER, R. et al. Cannabigerol is a potential therapeutic agent in a novel combined therapy for glioblastoma. Cells, v. 10, p. 340, 2021. DOI: 10.3390/cells10020340. DOI: https://doi.org/10.3390/cells10020340
LI, S.; LI, W.; MALHI, N. K.; HUANG, J.; LI, Q.; ZHOU, Z.; WANG, R.; PENG, J.; YIN, T.; WANG, H. Cannabigerol (CBG): a comprehensive review of its molecular mechanisms and therapeutic potential. Molecules, v. 29, p. 5471, 2024. DOI: https://doi.org/10.3390/molecules29225471. DOI: https://doi.org/10.3390/molecules29225471
LIPINSKI, C. A. et al. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced drug delivery reviews, v. 23, n. 1–3, p. 3–25, 1997 DOI: https://doi.org/10.1016/S0169-409X(96)00423-1
MITEVA, M. A.; VIOLAS, S.; MONTES, M.; GOMEZ, D.; TUFFERY, P.; VILLOUTREIX, B. O. FAF-Drugs: Free ADME/tox filtering of compound collections. Nucleic Acids Research, v. 34, p. W738–744, 2006. DOI: https://doi.org/10.1093/nar/gkl065
MORTELMANS, K.; ZEIGER, E. The Ames Salmonella/microsome mutagenicity assay. Mutation Research, v. 455, p. 29–60, 2000. DOI: https://doi.org/10.1016/S0027-5107(00)00064-6
PEREZ, E.; FERNANDEZ, J. R.; FITZGERALD, C.; ROUZARD, K.; TAMURA, M.; SAVILE, C. In vitro and clinical evaluation of cannabigerol (CBG) produced via yeast biosynthesis: a cannabinoid with a broad range of anti-inflammatory and skin health-boosting properties. Molecules, v. 27, p. 491, 2022. DOI: https://doi.org/10.3390/molecules27020491. DOI: https://doi.org/10.3390/molecules27020491
SEKHAR, K. C.; SYED, R.; GOLLA, M.; JYOTHI KUMAR, M. V.; YELLAPU, N. K.; CHIPPADA, A. R. et al. Novel heteroaryl phosphonicdiamides PTPs inhibitors as anti-hyperglycemic agents. DARU Journal of Pharmaceutical Sciences, v. 22:76 2014. DOI: https://doi.org/10.1186/s40199-014-0076-3
SEPULVEDA, D.E.; MORRIS, D.P.; RAUP-KONSAVAGE, W.M.; SUN, D.; VRANA, K.E.; GRAZIANE, N.M. Cannabigerol (CBG) attenuates mechanical hypersensitivity elicited by chemotherapy-induced peripheral neuropathy. European Journal of Pain, v. 26, p. 1950-1966, 2022. DOI: 10.1002/ejp.1974. DOI: https://doi.org/10.1002/ejp.2016
VISTOLI, G.; PEDRETTI, A.; TESTA, B. Assessing drug-likeness - what are we missing? Drug Discovery Today, v. 13, n. 7–8, p. 285–294, 2008. DOI: https://doi.org/10.1016/j.drudis.2007.11.007
YEE, S. In vitro permeability across Caco-2 cells (colonic) can predict in vivo (small intestinal) absorption in man--fact or myth. Pharm Res. v. 14, n. 6, p. 763-6, 1997. doi: 10.1023/a:1012102522787. PMID: 9210194. DOI: https://doi.org/10.1023/A:1012102522787
ZHAO, Y. H.; LE, J.; ABRAHAM, M. H.; HERSEY, A.; EDDERSHAW, P. J.; LUSCOMBE, C. N. et al. Evaluation of Human Intestinal Absorption Data and Subsequent Derivation of a Quantitative Structure ± Activity Relationship (QSAR) with the Abraham Descriptors. Journal of Pharmaceutical Sciences, v. 90, n. 6, p. 749–784, 2001. DOI: https://doi.org/10.1002/jps.1031