PHYSICOCHEMICAL, PHARMACOKINETIC AND BIOMEDICAL APPLICATIONS OF THE PHYTOCANNABINOID CANABIGEROL

Authors

  • Karen Isabely Cardoso de Sousa Author
  • Thais Neta de Sousa Author
  • Stéfano Araújo Ferreira Author
  • Rayane Rodrigues Lima Linhares Author
  • Tasiane Araújo de Carvalho Author
  • Karine Suelle Alves Pinheiro Author
  • Bianca de Sousa Leal Author
  • Lara Priscila Freitas Ferreira Author

DOI:

https://doi.org/10.56238/levv16n54-027

Keywords:

Medicinal Plants, Cannabis, Cannabinoids, Drug Design, Toxicity

Abstract

Cannabigerol (CBG), a non-psychoactive phytocannabinoid from Cannabis sativa, emerges as a highly versatile therapeutic agent, possessing a pharmacological profile distinct from CBD and THC due to its specific interaction with CB1 and CB2 receptors of the endocannabinoid system. This study employed a dual approach, integrating an in silico analysis of CBG properties with an integrative review of its biomedical applications. Computational analysis, performed using PreADMET and SwissADME tools, revealed a promising pharmacokinetic profile, characterized by high lipophilicity (Log P=+5.74), excellent oral bioavailability (93.71%), and adherence to drug similarity rules. CBG demonstrated a high probability of penetrating the central nervous system and a favorable initial safety profile, being predicted to be non-mutagenic and non-carcinogenic. The in silico results strongly correlate with the evidence from the integrative review, which compiled preclinical and clinical studies. The predicted high absorption and action in the CNS supports the anxiolytic and mood-modulating effects observed in humans and animal models. The predicted interaction with cytoplasmic and G protein-coupled receptors (GPCRs) provides a mechanistic basis for its broad spectrum of activities, which includes analgesic (such as the reduction of neuropathic pain), anti-inflammatory, antibacterial, antiviral, and even antitumor actions, as documented in the literature. The convergence between predictive data and experimental evidence validates the potential of CBG and demonstrates that computational tools are fundamental to guiding the rational development of safe and effective pharmaceutical formulations based on this cannabinoid, optimizing its path from the laboratory bench to clinical application.

Downloads

Download data is not yet available.

References

AMES, B. N.; GURNEY, E. G.; MILLER, J. A.; BARTSCH, H. Carcinogens as frameshift mutagens: metabolites and derivatives of 2-acetylaminofluorene and other aromatic amine carcinogens. Proceedings of the National Academy of Sciences of the United States of America, v. 69, n. 11, p. 3128–3132, 1972. DOI: https://doi.org/10.1073/pnas.69.11.3128

AQAWI, M.; SIONOV, R.V.; GALLILY, R.; FRIEDMAN, M.; STEINBERG, D. Anti-bacterial properties of cannabigerol toward Streptococcus mutans. Frontiers in Microbiology, v. 12, p. 656471, 2021. DOI: 10.3389/fmicb.2021.656471. DOI: https://doi.org/10.3389/fmicb.2021.656471

ARAKI, A.; KAMIGAITO, N.; SASAKI, T.; MATSUSHIMA, T. Mutagenicity of Carbon tetrachloride and chloroform in Salmonella typhimurium TA98, TA100, TA1535, and TA1537, and Escherichia coli WP2uvrA/ pKM101 and WP2/pKM101, using a gas exposure method. Environmental and Molecular Mutagenesis, v. 43, n. 2, p. 128–133, 2004. DOI: https://doi.org/10.1002/em.20005

CARONE, M.; PREMOLI, M.; BONINI, S. A.; LATSI, R.; MACCARINELLI, G.; MEMO, M. Behavioral effects of two cannabidiol and cannabigerol-rich formulas on mice. Heliyon, v. 10, n. 21, e39938, 2024. DOI: https://doi.org/10.1016/j.heliyon.2024.e39938. DOI: https://doi.org/10.1016/j.heliyon.2024.e39938

CHEN, G. et al. Effect of acute exposure of saxitoxin on development of zebrafish embryos (Danio rerio). Environmental research, v. 185, n. 109432, p. 109432, 2020. DOI: https://doi.org/10.1016/j.envres.2020.109432

CLASSEN, N.; PITAKBUT, T.; SCHÖFBÄNKER, M.; KÜHN, J.; HRINCIUS, E. R.; LUDWIG, S.; HENSEL, A.; KAYSER, O. Cannabigerol and cannabicyclol block SARS-CoV-2 cell fusion. Planta Medica, v. 90, n. 9, p. 717–725, 2024. DOI: https://doi.org/10.1055/a-2320-8822. DOI: https://doi.org/10.1055/a-2320-8822

CONTRERA, J. F.; JACOBS, A. C.; GEORGE, J. J. Carcinogenicity testing and the evaluation of regulatory requirements for pharmaceuticals. Regul Toxicol Pharmacol., v. 25, n. 2, p. 130-45, 1997. doi: 10.1006/rtph.1997.1085 DOI: https://doi.org/10.1006/rtph.1997.1085

CUTTLER, C.; STUEBER, A.; COOPER, Z. D. et al. Acute effects of cannabigerol on anxiety, stress, and mood: a double-blind, placebo-controlled, crossover, field trial. Scientific Reports, v. 14, n. 16163, 2024. DOI: https://doi.org/10.1038/s41598-024-66879-0. DOI: https://doi.org/10.1038/s41598-024-66879-0

DAINA, A.; MICHIELIN, O.; ZOETE, V. SwissTargetPrediction: updated data and new features for efficient prediction of protein targets of small molecules. Nucleic Acids Research, v. 47, n. W1, p. W357–364, 2019. DOI: https://doi.org/10.1093/nar/gkz382

DOLABELA, M. F.; SILVA, A. R. P.; OHASHI, L. H.; BASTOS, M. L. C.; SILVA, M. C. M.; VALE, V. V. Estudo in silico das atividades de triterpenos e iridoides isolados de Himatanthus articulatus (Vahl) Woodson. Revista Fitos, Rio de Janeiro, v. 12, n. 3, p. 227-242, 2018. DOI: https://doi.org/10.17648/2446-4775.2018.602

FERNANDES, E. B. Perfil ADMET de parâmetros farmacocinéticos para apoio à síntese de novos fármacos. 2017. Dissertação (Mestrado em Biofísica e Bionanossistemas) - Faculdade de Ciências, Universidade do Minho, Braga, Portugal, 2017.

GHOSE, A. K.; VISWANADHAN, V. N.; WENDOLOSKI, J. J. Prediction of hydrophobic (lipophilic) properties of small organic molecules using fragmental methods: An analysis of ALOGP and CLOGP methods. Journal of Physical Chemistry A, v. 102, n. 21, p. 3762–3772, 1998. DOI: https://doi.org/10.1021/jp980230o

GLEESON, M. P. Generation of a set of simple, interpretable ADMET rules of thumb. Journal of Medicinal Chemistry, v. 51, n. 4, p. 817–834, 2008. DOI: https://doi.org/10.1021/jm701122q

HARIKA, M. S.; KUMAR, R.; REDDY, S. S. Docking studies of benzimidazole derivatives using HEX 8.0 M. International Journal of Pharmaceutical Sciences and Research, v. 8 n. 4, p. 1677–1688, 2017.

HAYDUK, S. A.; HUGHES, A. C.; WINTER, R. L.; MILTON, M. D.; WARD, S. J. Single and combined effects of cannabigerol (CBG) and cannabidiol (CBD) in mouse models of oxaliplatin-associated mechanical sensitivity, opioid antinociception, and naloxone-precipitated opioid withdrawal. Biomedicines, v. 12, p. 1145, 2024. DOI: https://doi.org/10.3390/biomedicines12061145. DOI: https://doi.org/10.3390/biomedicines12061145

IDAKWO, G.; LUTTRELL, J.; CHEN, M.; HONG, H.; ZHOU, Z.; GONG, P. et al. A review on machine learning methods for in silico toxicity prediction. Journal of Environmental Science and Health, v. 36, n. 4, p. 169-191, 2018. DOI: https://doi.org/10.1080/10590501.2018.1537118

JASTRZĄB, A.; JAROCKA-KARPOWICZ, I.; SKRZYDLEWSKA, E. The origin and biomedical relevance of cannabigerol. International Journal of Molecular Sciences, v. 23, n. 14, p. 7929, 2022. DOI: https://doi.org/10.3390/ijms23147929. DOI: https://doi.org/10.3390/ijms23147929

KINGCADE, A. et al. Morbidity and mortality in Danio rerio and Pimephales promelas exposed to antilipidemic drug mixtures (fibrates and statins) during embryogenesis: Comprehensive assessment via ante and post-mortem endpoints. Chemosphere, v. 263, n. 127911, p. 127911, 2021. DOI: https://doi.org/10.1016/j.chemosphere.2020.127911

KOGAN, N.M.; LAVI, Y.; TOPPING, L.M.; WILLIAMS, R.O.; MCCANN, F.E.; YEKHTIN, Z.; FELDMANN, M.; GALLILY, R.; MECHOULAM, R. Novel CBG derivatives can reduce inflammation, pain and obesity. Molecules, v. 26, p. 5601, 2021. DOI: 10.3390/molecules26185601. DOI: https://doi.org/10.3390/molecules26185601

LAGORCE, D., DOUGUET, D., MITEVA, M. A., & VILLOUTREIX, B. O. Computational analysis of calculated physicochemical and ADMET properties of protein-protein interaction inhibitors. Scientific reports, v. 7, p. 46277, 2017. https://doi.org/10.1038/srep46277 DOI: https://doi.org/10.1038/srep46277

LAGORCE, D.; SPERANDIO, O.; GALONS, H.; MITEVA, M. A.; VILLOUTREIX, B. O. FAF-Drugs2: Free ADME/tox filtering tool to assist drug discovery and chemical biology projects. BMC Bioinformatics, v. 9, p. 1–9, 2008. DOI: https://doi.org/10.1186/1471-2105-9-396

LAH, T.T.; NOVAK, M.; PENA ALMIDON, M.A.; MARINELLI, O.; ŽVAR BAŠKOVIČ, B.; MAJC, B.; MLINAR, M.; BOŠNJAK, R.; BREZNIK, B.; ZOMER, R. et al. Cannabigerol is a potential therapeutic agent in a novel combined therapy for glioblastoma. Cells, v. 10, p. 340, 2021. DOI: 10.3390/cells10020340. DOI: https://doi.org/10.3390/cells10020340

LI, S.; LI, W.; MALHI, N. K.; HUANG, J.; LI, Q.; ZHOU, Z.; WANG, R.; PENG, J.; YIN, T.; WANG, H. Cannabigerol (CBG): a comprehensive review of its molecular mechanisms and therapeutic potential. Molecules, v. 29, p. 5471, 2024. DOI: https://doi.org/10.3390/molecules29225471. DOI: https://doi.org/10.3390/molecules29225471

LIPINSKI, C. A. et al. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced drug delivery reviews, v. 23, n. 1–3, p. 3–25, 1997 DOI: https://doi.org/10.1016/S0169-409X(96)00423-1

MITEVA, M. A.; VIOLAS, S.; MONTES, M.; GOMEZ, D.; TUFFERY, P.; VILLOUTREIX, B. O. FAF-Drugs: Free ADME/tox filtering of compound collections. Nucleic Acids Research, v. 34, p. W738–744, 2006. DOI: https://doi.org/10.1093/nar/gkl065

MORTELMANS, K.; ZEIGER, E. The Ames Salmonella/microsome mutagenicity assay. Mutation Research, v. 455, p. 29–60, 2000. DOI: https://doi.org/10.1016/S0027-5107(00)00064-6

PEREZ, E.; FERNANDEZ, J. R.; FITZGERALD, C.; ROUZARD, K.; TAMURA, M.; SAVILE, C. In vitro and clinical evaluation of cannabigerol (CBG) produced via yeast biosynthesis: a cannabinoid with a broad range of anti-inflammatory and skin health-boosting properties. Molecules, v. 27, p. 491, 2022. DOI: https://doi.org/10.3390/molecules27020491. DOI: https://doi.org/10.3390/molecules27020491

SEKHAR, K. C.; SYED, R.; GOLLA, M.; JYOTHI KUMAR, M. V.; YELLAPU, N. K.; CHIPPADA, A. R. et al. Novel heteroaryl phosphonicdiamides PTPs inhibitors as anti-hyperglycemic agents. DARU Journal of Pharmaceutical Sciences, v. 22:76 2014. DOI: https://doi.org/10.1186/s40199-014-0076-3

SEPULVEDA, D.E.; MORRIS, D.P.; RAUP-KONSAVAGE, W.M.; SUN, D.; VRANA, K.E.; GRAZIANE, N.M. Cannabigerol (CBG) attenuates mechanical hypersensitivity elicited by chemotherapy-induced peripheral neuropathy. European Journal of Pain, v. 26, p. 1950-1966, 2022. DOI: 10.1002/ejp.1974. DOI: https://doi.org/10.1002/ejp.2016

VISTOLI, G.; PEDRETTI, A.; TESTA, B. Assessing drug-likeness - what are we missing? Drug Discovery Today, v. 13, n. 7–8, p. 285–294, 2008. DOI: https://doi.org/10.1016/j.drudis.2007.11.007

YEE, S. In vitro permeability across Caco-2 cells (colonic) can predict in vivo (small intestinal) absorption in man--fact or myth. Pharm Res. v. 14, n. 6, p. 763-6, 1997. doi: 10.1023/a:1012102522787. PMID: 9210194. DOI: https://doi.org/10.1023/A:1012102522787

ZHAO, Y. H.; LE, J.; ABRAHAM, M. H.; HERSEY, A.; EDDERSHAW, P. J.; LUSCOMBE, C. N. et al. Evaluation of Human Intestinal Absorption Data and Subsequent Derivation of a Quantitative Structure ± Activity Relationship (QSAR) with the Abraham Descriptors. Journal of Pharmaceutical Sciences, v. 90, n. 6, p. 749–784, 2001. DOI: https://doi.org/10.1002/jps.1031

Published

2025-11-06

How to Cite

DE SOUSA, Karen Isabely Cardoso; DE SOUSA, Thais Neta; FERREIRA, Stéfano Araújo; LINHARES, Rayane Rodrigues Lima; DE CARVALHO, Tasiane Araújo; PINHEIRO, Karine Suelle Alves; LEAL, Bianca de Sousa; FERREIRA, Lara Priscila Freitas. PHYSICOCHEMICAL, PHARMACOKINETIC AND BIOMEDICAL APPLICATIONS OF THE PHYTOCANNABINOID CANABIGEROL. LUMEN ET VIRTUS, [S. l.], v. 16, n. 54, p. e9694 , 2025. DOI: 10.56238/levv16n54-027. Disponível em: https://periodicos.newsciencepubl.com/LEV/article/view/9694. Acesso em: 5 dec. 2025.