PROPRIEDADES FÍSICO-QUÍMICAS, FARMACOCINÉTICAS E APLICAÇÕES BIOMÉDICAS DO FITOCANABINÓIDE CANABIGEROL
DOI:
https://doi.org/10.56238/levv16n54-027Palavras-chave:
Plantas Medicinais, Cannabis, Canabinoides, Desenho de Fármacos, ToxicidadeResumo
O canabigerol (CBG), um fitocanabinoide não psicoativo da Cannabis sativa, emerge como um agente terapêutico de grande versatilidade, possuindo um perfil farmacológico distinto do CBD e do THC devido à sua interação específica com os receptores CB1 e CB2 do sistema endocanabinoide. Este estudo empregou uma abordagem dupla, integrando uma análise in silico das propriedades do CBG com uma revisão integrativa de suas aplicações biomédicas. A análise computacional, realizada com as ferramentas PreADMET e SwissADME, revelou um perfil farmacocinético promissor, caracterizado por alta lipossolubilidade (Log P=+5,74), excelente biodisponibilidade oral (93,71%) e adequação às regras de semelhança a fármacos. O CBG demonstrou alta probabilidade de penetrar no sistema nervoso central e um perfil de segurança inicial favorável, sendo predito como não mutagênico e não carcinogênico. Os resultados in silico encontram forte correlação com as evidências da revisão integrativa, que compilou estudos pré-clínicos e clínicos. A previsão de alta absorção e ação no SNC sustenta os efeitos ansiolíticos e de modulação do humor observados em humanos e modelos animais. A interação prevista com receptores citoplasmáticos e acoplados à proteína G (GPCRs) fornece uma base mecanicista para seu amplo espectro de atividades, que inclui ações analgésicas (como a redução da dor neuropática), anti-inflamatórias, antibacterianas, antivirais e até mesmo antitumorais, conforme documentado na literatura. A convergência entre os dados preditivos e as evidências experimentais valida o potencial do CBG e demonstra que as ferramentas computacionais são fundamentais para guiar o desenvolvimento racional de formulações farmacêuticas seguras e eficazes baseadas neste canabinoide, otimizando seu caminho desde a bancada do laboratório até a aplicação clínica.
Downloads
Referências
AMES, B. N.; GURNEY, E. G.; MILLER, J. A.; BARTSCH, H. Carcinogens as frameshift mutagens: metabolites and derivatives of 2-acetylaminofluorene and other aromatic amine carcinogens. Proceedings of the National Academy of Sciences of the United States of America, v. 69, n. 11, p. 3128–3132, 1972. DOI: https://doi.org/10.1073/pnas.69.11.3128
AQAWI, M.; SIONOV, R.V.; GALLILY, R.; FRIEDMAN, M.; STEINBERG, D. Anti-bacterial properties of cannabigerol toward Streptococcus mutans. Frontiers in Microbiology, v. 12, p. 656471, 2021. DOI: 10.3389/fmicb.2021.656471. DOI: https://doi.org/10.3389/fmicb.2021.656471
ARAKI, A.; KAMIGAITO, N.; SASAKI, T.; MATSUSHIMA, T. Mutagenicity of Carbon tetrachloride and chloroform in Salmonella typhimurium TA98, TA100, TA1535, and TA1537, and Escherichia coli WP2uvrA/ pKM101 and WP2/pKM101, using a gas exposure method. Environmental and Molecular Mutagenesis, v. 43, n. 2, p. 128–133, 2004. DOI: https://doi.org/10.1002/em.20005
CARONE, M.; PREMOLI, M.; BONINI, S. A.; LATSI, R.; MACCARINELLI, G.; MEMO, M. Behavioral effects of two cannabidiol and cannabigerol-rich formulas on mice. Heliyon, v. 10, n. 21, e39938, 2024. DOI: https://doi.org/10.1016/j.heliyon.2024.e39938. DOI: https://doi.org/10.1016/j.heliyon.2024.e39938
CHEN, G. et al. Effect of acute exposure of saxitoxin on development of zebrafish embryos (Danio rerio). Environmental research, v. 185, n. 109432, p. 109432, 2020. DOI: https://doi.org/10.1016/j.envres.2020.109432
CLASSEN, N.; PITAKBUT, T.; SCHÖFBÄNKER, M.; KÜHN, J.; HRINCIUS, E. R.; LUDWIG, S.; HENSEL, A.; KAYSER, O. Cannabigerol and cannabicyclol block SARS-CoV-2 cell fusion. Planta Medica, v. 90, n. 9, p. 717–725, 2024. DOI: https://doi.org/10.1055/a-2320-8822. DOI: https://doi.org/10.1055/a-2320-8822
CONTRERA, J. F.; JACOBS, A. C.; GEORGE, J. J. Carcinogenicity testing and the evaluation of regulatory requirements for pharmaceuticals. Regul Toxicol Pharmacol., v. 25, n. 2, p. 130-45, 1997. doi: 10.1006/rtph.1997.1085 DOI: https://doi.org/10.1006/rtph.1997.1085
CUTTLER, C.; STUEBER, A.; COOPER, Z. D. et al. Acute effects of cannabigerol on anxiety, stress, and mood: a double-blind, placebo-controlled, crossover, field trial. Scientific Reports, v. 14, n. 16163, 2024. DOI: https://doi.org/10.1038/s41598-024-66879-0. DOI: https://doi.org/10.1038/s41598-024-66879-0
DAINA, A.; MICHIELIN, O.; ZOETE, V. SwissTargetPrediction: updated data and new features for efficient prediction of protein targets of small molecules. Nucleic Acids Research, v. 47, n. W1, p. W357–364, 2019. DOI: https://doi.org/10.1093/nar/gkz382
DOLABELA, M. F.; SILVA, A. R. P.; OHASHI, L. H.; BASTOS, M. L. C.; SILVA, M. C. M.; VALE, V. V. Estudo in silico das atividades de triterpenos e iridoides isolados de Himatanthus articulatus (Vahl) Woodson. Revista Fitos, Rio de Janeiro, v. 12, n. 3, p. 227-242, 2018. DOI: https://doi.org/10.17648/2446-4775.2018.602
FERNANDES, E. B. Perfil ADMET de parâmetros farmacocinéticos para apoio à síntese de novos fármacos. 2017. Dissertação (Mestrado em Biofísica e Bionanossistemas) - Faculdade de Ciências, Universidade do Minho, Braga, Portugal, 2017.
GHOSE, A. K.; VISWANADHAN, V. N.; WENDOLOSKI, J. J. Prediction of hydrophobic (lipophilic) properties of small organic molecules using fragmental methods: An analysis of ALOGP and CLOGP methods. Journal of Physical Chemistry A, v. 102, n. 21, p. 3762–3772, 1998. DOI: https://doi.org/10.1021/jp980230o
GLEESON, M. P. Generation of a set of simple, interpretable ADMET rules of thumb. Journal of Medicinal Chemistry, v. 51, n. 4, p. 817–834, 2008. DOI: https://doi.org/10.1021/jm701122q
HARIKA, M. S.; KUMAR, R.; REDDY, S. S. Docking studies of benzimidazole derivatives using HEX 8.0 M. International Journal of Pharmaceutical Sciences and Research, v. 8 n. 4, p. 1677–1688, 2017.
HAYDUK, S. A.; HUGHES, A. C.; WINTER, R. L.; MILTON, M. D.; WARD, S. J. Single and combined effects of cannabigerol (CBG) and cannabidiol (CBD) in mouse models of oxaliplatin-associated mechanical sensitivity, opioid antinociception, and naloxone-precipitated opioid withdrawal. Biomedicines, v. 12, p. 1145, 2024. DOI: https://doi.org/10.3390/biomedicines12061145. DOI: https://doi.org/10.3390/biomedicines12061145
IDAKWO, G.; LUTTRELL, J.; CHEN, M.; HONG, H.; ZHOU, Z.; GONG, P. et al. A review on machine learning methods for in silico toxicity prediction. Journal of Environmental Science and Health, v. 36, n. 4, p. 169-191, 2018. DOI: https://doi.org/10.1080/10590501.2018.1537118
JASTRZĄB, A.; JAROCKA-KARPOWICZ, I.; SKRZYDLEWSKA, E. The origin and biomedical relevance of cannabigerol. International Journal of Molecular Sciences, v. 23, n. 14, p. 7929, 2022. DOI: https://doi.org/10.3390/ijms23147929. DOI: https://doi.org/10.3390/ijms23147929
KINGCADE, A. et al. Morbidity and mortality in Danio rerio and Pimephales promelas exposed to antilipidemic drug mixtures (fibrates and statins) during embryogenesis: Comprehensive assessment via ante and post-mortem endpoints. Chemosphere, v. 263, n. 127911, p. 127911, 2021. DOI: https://doi.org/10.1016/j.chemosphere.2020.127911
KOGAN, N.M.; LAVI, Y.; TOPPING, L.M.; WILLIAMS, R.O.; MCCANN, F.E.; YEKHTIN, Z.; FELDMANN, M.; GALLILY, R.; MECHOULAM, R. Novel CBG derivatives can reduce inflammation, pain and obesity. Molecules, v. 26, p. 5601, 2021. DOI: 10.3390/molecules26185601. DOI: https://doi.org/10.3390/molecules26185601
LAGORCE, D., DOUGUET, D., MITEVA, M. A., & VILLOUTREIX, B. O. Computational analysis of calculated physicochemical and ADMET properties of protein-protein interaction inhibitors. Scientific reports, v. 7, p. 46277, 2017. https://doi.org/10.1038/srep46277 DOI: https://doi.org/10.1038/srep46277
LAGORCE, D.; SPERANDIO, O.; GALONS, H.; MITEVA, M. A.; VILLOUTREIX, B. O. FAF-Drugs2: Free ADME/tox filtering tool to assist drug discovery and chemical biology projects. BMC Bioinformatics, v. 9, p. 1–9, 2008. DOI: https://doi.org/10.1186/1471-2105-9-396
LAH, T.T.; NOVAK, M.; PENA ALMIDON, M.A.; MARINELLI, O.; ŽVAR BAŠKOVIČ, B.; MAJC, B.; MLINAR, M.; BOŠNJAK, R.; BREZNIK, B.; ZOMER, R. et al. Cannabigerol is a potential therapeutic agent in a novel combined therapy for glioblastoma. Cells, v. 10, p. 340, 2021. DOI: 10.3390/cells10020340. DOI: https://doi.org/10.3390/cells10020340
LI, S.; LI, W.; MALHI, N. K.; HUANG, J.; LI, Q.; ZHOU, Z.; WANG, R.; PENG, J.; YIN, T.; WANG, H. Cannabigerol (CBG): a comprehensive review of its molecular mechanisms and therapeutic potential. Molecules, v. 29, p. 5471, 2024. DOI: https://doi.org/10.3390/molecules29225471. DOI: https://doi.org/10.3390/molecules29225471
LIPINSKI, C. A. et al. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced drug delivery reviews, v. 23, n. 1–3, p. 3–25, 1997 DOI: https://doi.org/10.1016/S0169-409X(96)00423-1
MITEVA, M. A.; VIOLAS, S.; MONTES, M.; GOMEZ, D.; TUFFERY, P.; VILLOUTREIX, B. O. FAF-Drugs: Free ADME/tox filtering of compound collections. Nucleic Acids Research, v. 34, p. W738–744, 2006. DOI: https://doi.org/10.1093/nar/gkl065
MORTELMANS, K.; ZEIGER, E. The Ames Salmonella/microsome mutagenicity assay. Mutation Research, v. 455, p. 29–60, 2000. DOI: https://doi.org/10.1016/S0027-5107(00)00064-6
PEREZ, E.; FERNANDEZ, J. R.; FITZGERALD, C.; ROUZARD, K.; TAMURA, M.; SAVILE, C. In vitro and clinical evaluation of cannabigerol (CBG) produced via yeast biosynthesis: a cannabinoid with a broad range of anti-inflammatory and skin health-boosting properties. Molecules, v. 27, p. 491, 2022. DOI: https://doi.org/10.3390/molecules27020491. DOI: https://doi.org/10.3390/molecules27020491
SEKHAR, K. C.; SYED, R.; GOLLA, M.; JYOTHI KUMAR, M. V.; YELLAPU, N. K.; CHIPPADA, A. R. et al. Novel heteroaryl phosphonicdiamides PTPs inhibitors as anti-hyperglycemic agents. DARU Journal of Pharmaceutical Sciences, v. 22:76 2014. DOI: https://doi.org/10.1186/s40199-014-0076-3
SEPULVEDA, D.E.; MORRIS, D.P.; RAUP-KONSAVAGE, W.M.; SUN, D.; VRANA, K.E.; GRAZIANE, N.M. Cannabigerol (CBG) attenuates mechanical hypersensitivity elicited by chemotherapy-induced peripheral neuropathy. European Journal of Pain, v. 26, p. 1950-1966, 2022. DOI: 10.1002/ejp.1974. DOI: https://doi.org/10.1002/ejp.2016
VISTOLI, G.; PEDRETTI, A.; TESTA, B. Assessing drug-likeness - what are we missing? Drug Discovery Today, v. 13, n. 7–8, p. 285–294, 2008. DOI: https://doi.org/10.1016/j.drudis.2007.11.007
YEE, S. In vitro permeability across Caco-2 cells (colonic) can predict in vivo (small intestinal) absorption in man--fact or myth. Pharm Res. v. 14, n. 6, p. 763-6, 1997. doi: 10.1023/a:1012102522787. PMID: 9210194. DOI: https://doi.org/10.1023/A:1012102522787
ZHAO, Y. H.; LE, J.; ABRAHAM, M. H.; HERSEY, A.; EDDERSHAW, P. J.; LUSCOMBE, C. N. et al. Evaluation of Human Intestinal Absorption Data and Subsequent Derivation of a Quantitative Structure ± Activity Relationship (QSAR) with the Abraham Descriptors. Journal of Pharmaceutical Sciences, v. 90, n. 6, p. 749–784, 2001. DOI: https://doi.org/10.1002/jps.1031