PROPIEDADES FISICOQUÍMICAS, FARMACOCINÉTICAS Y APLICACIONES BIOMÉDICAS DEL FITOCANNABINOIDE CANNABIGEROL

Autores/as

  • Karen Isabely Cardoso de Sousa Autor/a
  • Thais Neta de Sousa Autor/a
  • Stéfano Araújo Ferreira Autor/a
  • Rayane Rodrigues Lima Linhares Autor/a
  • Tasiane Araújo de Carvalho Autor/a
  • Karine Suelle Alves Pinheiro Autor/a
  • Bianca de Sousa Leal Autor/a
  • Lara Priscila Freitas Ferreira Autor/a

DOI:

https://doi.org/10.56238/levv16n54-027

Palabras clave:

Plantas Medicinales, Cannabis, Cannabinoides, Diseño de Fármacos, Toxicidad

Resumen

El cannabigerol (CBG), un fitocannabinoide no psicoactivo de la Cannabis sativa, se perfila como un agente terapéutico altamente versátil, con un perfil farmacológico distinto al del CBD y el THC debido a su interacción específica con los receptores CB1 y CB2 del sistema endocannabinoide. Este estudio empleó un enfoque dual, integrando un análisis in silico de las propiedades del CBG con una revisión integrativa de sus aplicaciones biomédicas. El análisis computacional, realizado con las herramientas PreADMET y SwissADME, reveló un perfil farmacocinético prometedor, caracterizado por una alta lipofilicidad (Log P = +5,74), una excelente biodisponibilidad oral (93,71 %) y el cumplimiento de las reglas de similitud de fármacos. El CBG demostró una alta probabilidad de penetrar el sistema nervioso central y un perfil de seguridad inicial favorable, con una predicción de no mutagenicidad ni carcinogenicidad. Los resultados in silico se correlacionan fuertemente con la evidencia de la revisión integrativa, que recopiló estudios preclínicos y clínicos. La alta absorción y acción previstas en el SNC respaldan los efectos ansiolíticos y moduladores del estado de ánimo observados en humanos y modelos animales. La interacción prevista con receptores citoplasmáticos y acoplados a proteínas G (GPCR) proporciona una base mecanística para su amplio espectro de actividades, que incluye acciones analgésicas (como la reducción del dolor neuropático), antiinflamatorias, antibacterianas, antivirales e incluso antitumorales, tal como se documenta en la literatura. La convergencia entre los datos predictivos y la evidencia experimental valida el potencial del CBG y demuestra que las herramientas computacionales son fundamentales para guiar el desarrollo racional de formulaciones farmacéuticas seguras y eficaces basadas en este cannabinoide, optimizando su traslación desde el laboratorio hasta la aplicación clínica.

Descargas

Los datos de descarga aún no están disponibles.

Referencias

AMES, B. N.; GURNEY, E. G.; MILLER, J. A.; BARTSCH, H. Carcinogens as frameshift mutagens: metabolites and derivatives of 2-acetylaminofluorene and other aromatic amine carcinogens. Proceedings of the National Academy of Sciences of the United States of America, v. 69, n. 11, p. 3128–3132, 1972. DOI: https://doi.org/10.1073/pnas.69.11.3128

AQAWI, M.; SIONOV, R.V.; GALLILY, R.; FRIEDMAN, M.; STEINBERG, D. Anti-bacterial properties of cannabigerol toward Streptococcus mutans. Frontiers in Microbiology, v. 12, p. 656471, 2021. DOI: 10.3389/fmicb.2021.656471. DOI: https://doi.org/10.3389/fmicb.2021.656471

ARAKI, A.; KAMIGAITO, N.; SASAKI, T.; MATSUSHIMA, T. Mutagenicity of Carbon tetrachloride and chloroform in Salmonella typhimurium TA98, TA100, TA1535, and TA1537, and Escherichia coli WP2uvrA/ pKM101 and WP2/pKM101, using a gas exposure method. Environmental and Molecular Mutagenesis, v. 43, n. 2, p. 128–133, 2004. DOI: https://doi.org/10.1002/em.20005

CARONE, M.; PREMOLI, M.; BONINI, S. A.; LATSI, R.; MACCARINELLI, G.; MEMO, M. Behavioral effects of two cannabidiol and cannabigerol-rich formulas on mice. Heliyon, v. 10, n. 21, e39938, 2024. DOI: https://doi.org/10.1016/j.heliyon.2024.e39938. DOI: https://doi.org/10.1016/j.heliyon.2024.e39938

CHEN, G. et al. Effect of acute exposure of saxitoxin on development of zebrafish embryos (Danio rerio). Environmental research, v. 185, n. 109432, p. 109432, 2020. DOI: https://doi.org/10.1016/j.envres.2020.109432

CLASSEN, N.; PITAKBUT, T.; SCHÖFBÄNKER, M.; KÜHN, J.; HRINCIUS, E. R.; LUDWIG, S.; HENSEL, A.; KAYSER, O. Cannabigerol and cannabicyclol block SARS-CoV-2 cell fusion. Planta Medica, v. 90, n. 9, p. 717–725, 2024. DOI: https://doi.org/10.1055/a-2320-8822. DOI: https://doi.org/10.1055/a-2320-8822

CONTRERA, J. F.; JACOBS, A. C.; GEORGE, J. J. Carcinogenicity testing and the evaluation of regulatory requirements for pharmaceuticals. Regul Toxicol Pharmacol., v. 25, n. 2, p. 130-45, 1997. doi: 10.1006/rtph.1997.1085 DOI: https://doi.org/10.1006/rtph.1997.1085

CUTTLER, C.; STUEBER, A.; COOPER, Z. D. et al. Acute effects of cannabigerol on anxiety, stress, and mood: a double-blind, placebo-controlled, crossover, field trial. Scientific Reports, v. 14, n. 16163, 2024. DOI: https://doi.org/10.1038/s41598-024-66879-0. DOI: https://doi.org/10.1038/s41598-024-66879-0

DAINA, A.; MICHIELIN, O.; ZOETE, V. SwissTargetPrediction: updated data and new features for efficient prediction of protein targets of small molecules. Nucleic Acids Research, v. 47, n. W1, p. W357–364, 2019. DOI: https://doi.org/10.1093/nar/gkz382

DOLABELA, M. F.; SILVA, A. R. P.; OHASHI, L. H.; BASTOS, M. L. C.; SILVA, M. C. M.; VALE, V. V. Estudo in silico das atividades de triterpenos e iridoides isolados de Himatanthus articulatus (Vahl) Woodson. Revista Fitos, Rio de Janeiro, v. 12, n. 3, p. 227-242, 2018. DOI: https://doi.org/10.17648/2446-4775.2018.602

FERNANDES, E. B. Perfil ADMET de parâmetros farmacocinéticos para apoio à síntese de novos fármacos. 2017. Dissertação (Mestrado em Biofísica e Bionanossistemas) - Faculdade de Ciências, Universidade do Minho, Braga, Portugal, 2017.

GHOSE, A. K.; VISWANADHAN, V. N.; WENDOLOSKI, J. J. Prediction of hydrophobic (lipophilic) properties of small organic molecules using fragmental methods: An analysis of ALOGP and CLOGP methods. Journal of Physical Chemistry A, v. 102, n. 21, p. 3762–3772, 1998. DOI: https://doi.org/10.1021/jp980230o

GLEESON, M. P. Generation of a set of simple, interpretable ADMET rules of thumb. Journal of Medicinal Chemistry, v. 51, n. 4, p. 817–834, 2008. DOI: https://doi.org/10.1021/jm701122q

HARIKA, M. S.; KUMAR, R.; REDDY, S. S. Docking studies of benzimidazole derivatives using HEX 8.0 M. International Journal of Pharmaceutical Sciences and Research, v. 8 n. 4, p. 1677–1688, 2017.

HAYDUK, S. A.; HUGHES, A. C.; WINTER, R. L.; MILTON, M. D.; WARD, S. J. Single and combined effects of cannabigerol (CBG) and cannabidiol (CBD) in mouse models of oxaliplatin-associated mechanical sensitivity, opioid antinociception, and naloxone-precipitated opioid withdrawal. Biomedicines, v. 12, p. 1145, 2024. DOI: https://doi.org/10.3390/biomedicines12061145. DOI: https://doi.org/10.3390/biomedicines12061145

IDAKWO, G.; LUTTRELL, J.; CHEN, M.; HONG, H.; ZHOU, Z.; GONG, P. et al. A review on machine learning methods for in silico toxicity prediction. Journal of Environmental Science and Health, v. 36, n. 4, p. 169-191, 2018. DOI: https://doi.org/10.1080/10590501.2018.1537118

JASTRZĄB, A.; JAROCKA-KARPOWICZ, I.; SKRZYDLEWSKA, E. The origin and biomedical relevance of cannabigerol. International Journal of Molecular Sciences, v. 23, n. 14, p. 7929, 2022. DOI: https://doi.org/10.3390/ijms23147929. DOI: https://doi.org/10.3390/ijms23147929

KINGCADE, A. et al. Morbidity and mortality in Danio rerio and Pimephales promelas exposed to antilipidemic drug mixtures (fibrates and statins) during embryogenesis: Comprehensive assessment via ante and post-mortem endpoints. Chemosphere, v. 263, n. 127911, p. 127911, 2021. DOI: https://doi.org/10.1016/j.chemosphere.2020.127911

KOGAN, N.M.; LAVI, Y.; TOPPING, L.M.; WILLIAMS, R.O.; MCCANN, F.E.; YEKHTIN, Z.; FELDMANN, M.; GALLILY, R.; MECHOULAM, R. Novel CBG derivatives can reduce inflammation, pain and obesity. Molecules, v. 26, p. 5601, 2021. DOI: 10.3390/molecules26185601. DOI: https://doi.org/10.3390/molecules26185601

LAGORCE, D., DOUGUET, D., MITEVA, M. A., & VILLOUTREIX, B. O. Computational analysis of calculated physicochemical and ADMET properties of protein-protein interaction inhibitors. Scientific reports, v. 7, p. 46277, 2017. https://doi.org/10.1038/srep46277 DOI: https://doi.org/10.1038/srep46277

LAGORCE, D.; SPERANDIO, O.; GALONS, H.; MITEVA, M. A.; VILLOUTREIX, B. O. FAF-Drugs2: Free ADME/tox filtering tool to assist drug discovery and chemical biology projects. BMC Bioinformatics, v. 9, p. 1–9, 2008. DOI: https://doi.org/10.1186/1471-2105-9-396

LAH, T.T.; NOVAK, M.; PENA ALMIDON, M.A.; MARINELLI, O.; ŽVAR BAŠKOVIČ, B.; MAJC, B.; MLINAR, M.; BOŠNJAK, R.; BREZNIK, B.; ZOMER, R. et al. Cannabigerol is a potential therapeutic agent in a novel combined therapy for glioblastoma. Cells, v. 10, p. 340, 2021. DOI: 10.3390/cells10020340. DOI: https://doi.org/10.3390/cells10020340

LI, S.; LI, W.; MALHI, N. K.; HUANG, J.; LI, Q.; ZHOU, Z.; WANG, R.; PENG, J.; YIN, T.; WANG, H. Cannabigerol (CBG): a comprehensive review of its molecular mechanisms and therapeutic potential. Molecules, v. 29, p. 5471, 2024. DOI: https://doi.org/10.3390/molecules29225471. DOI: https://doi.org/10.3390/molecules29225471

LIPINSKI, C. A. et al. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced drug delivery reviews, v. 23, n. 1–3, p. 3–25, 1997 DOI: https://doi.org/10.1016/S0169-409X(96)00423-1

MITEVA, M. A.; VIOLAS, S.; MONTES, M.; GOMEZ, D.; TUFFERY, P.; VILLOUTREIX, B. O. FAF-Drugs: Free ADME/tox filtering of compound collections. Nucleic Acids Research, v. 34, p. W738–744, 2006. DOI: https://doi.org/10.1093/nar/gkl065

MORTELMANS, K.; ZEIGER, E. The Ames Salmonella/microsome mutagenicity assay. Mutation Research, v. 455, p. 29–60, 2000. DOI: https://doi.org/10.1016/S0027-5107(00)00064-6

PEREZ, E.; FERNANDEZ, J. R.; FITZGERALD, C.; ROUZARD, K.; TAMURA, M.; SAVILE, C. In vitro and clinical evaluation of cannabigerol (CBG) produced via yeast biosynthesis: a cannabinoid with a broad range of anti-inflammatory and skin health-boosting properties. Molecules, v. 27, p. 491, 2022. DOI: https://doi.org/10.3390/molecules27020491. DOI: https://doi.org/10.3390/molecules27020491

SEKHAR, K. C.; SYED, R.; GOLLA, M.; JYOTHI KUMAR, M. V.; YELLAPU, N. K.; CHIPPADA, A. R. et al. Novel heteroaryl phosphonicdiamides PTPs inhibitors as anti-hyperglycemic agents. DARU Journal of Pharmaceutical Sciences, v. 22:76 2014. DOI: https://doi.org/10.1186/s40199-014-0076-3

SEPULVEDA, D.E.; MORRIS, D.P.; RAUP-KONSAVAGE, W.M.; SUN, D.; VRANA, K.E.; GRAZIANE, N.M. Cannabigerol (CBG) attenuates mechanical hypersensitivity elicited by chemotherapy-induced peripheral neuropathy. European Journal of Pain, v. 26, p. 1950-1966, 2022. DOI: 10.1002/ejp.1974. DOI: https://doi.org/10.1002/ejp.2016

VISTOLI, G.; PEDRETTI, A.; TESTA, B. Assessing drug-likeness - what are we missing? Drug Discovery Today, v. 13, n. 7–8, p. 285–294, 2008. DOI: https://doi.org/10.1016/j.drudis.2007.11.007

YEE, S. In vitro permeability across Caco-2 cells (colonic) can predict in vivo (small intestinal) absorption in man--fact or myth. Pharm Res. v. 14, n. 6, p. 763-6, 1997. doi: 10.1023/a:1012102522787. PMID: 9210194. DOI: https://doi.org/10.1023/A:1012102522787

ZHAO, Y. H.; LE, J.; ABRAHAM, M. H.; HERSEY, A.; EDDERSHAW, P. J.; LUSCOMBE, C. N. et al. Evaluation of Human Intestinal Absorption Data and Subsequent Derivation of a Quantitative Structure ± Activity Relationship (QSAR) with the Abraham Descriptors. Journal of Pharmaceutical Sciences, v. 90, n. 6, p. 749–784, 2001. DOI: https://doi.org/10.1002/jps.1031

Publicado

2025-11-06

Cómo citar

DE SOUSA, Karen Isabely Cardoso; DE SOUSA, Thais Neta; FERREIRA, Stéfano Araújo; LINHARES, Rayane Rodrigues Lima; DE CARVALHO, Tasiane Araújo; PINHEIRO, Karine Suelle Alves; LEAL, Bianca de Sousa; FERREIRA, Lara Priscila Freitas. PROPIEDADES FISICOQUÍMICAS, FARMACOCINÉTICAS Y APLICACIONES BIOMÉDICAS DEL FITOCANNABINOIDE CANNABIGEROL. LUMEN ET VIRTUS, [S. l.], v. 16, n. 54, p. e9694 , 2025. DOI: 10.56238/levv16n54-027. Disponível em: https://periodicos.newsciencepubl.com/LEV/article/view/9694. Acesso em: 5 dec. 2025.