O IMPACTO DOS FUNGICIDAS SOBRE A MICROBIOTA DO SOLO: UMA REVISÃO BIBLIOGRÁFICA
DOI:
https://doi.org/10.56238/arev7n11-064Palavras-chave:
Fitopatógenos, Manejo, Fungos, Bactérias, MicrorganismosResumo
A intensificação da agricultura moderna tem elevado o uso de fungicidas para o controle de doenças fúngicas e a garantia da produtividade agrícola. No entanto, seu uso extensivo tem gerado preocupações quanto aos impactos ecológicos sobre a microbiota do solo. Este estudo teve como objetivo avaliar, por meio de uma revisão bibliográfica sistemática, os efeitos dos fungicidas sobre a composição, diversidade e funcionalidade microbiana em ecossistemas edáficos. A pesquisa foi conduzida nas bases Google Scholar, ScienceDirect e Periódicos CAPES, abrangendo o período de 2020 a 2025, com o uso dos descritores “fungicide, microorganisms, soil e microbiome”. Foram selecionados 54 artigos científicos que atenderam aos critérios de inclusão, contemplando experimentos de campo e de laboratório. Os resultados indicam que os fungicidas atuam como importantes estressores ecológicos, afetando a estrutura, a diversidade e as funções metabólicas da microbiota do solo. Comunidades fúngicas mostraram-se mais sensíveis que as bacterianas, apresentando reduções significativas na diversidade e biomassa após a exposição a compostos triazóis e estrobilurinas. Houve também uma diminuição da atividade enzimática (desidrogenase, fosfatase e urease) e interferência na ciclagem de nutrientes, especialmente nos ciclos do carbono e do nitrogênio. Embora o uso de fungicidas seja indispensável para a proteção das culturas, esta revisão evidencia seus efeitos sobre a funcionalidade do solo. Observou-se que alguns gêneros bacterianos, como Pseudomonas e Arthrobacter, apresentam capacidade de degradação e adaptação a esses compostos. Apesar de existirem indícios de resiliência microbiana e possíveis efeitos benéficos, ainda persistem lacunas quanto aos impactos de longo prazo, o que reforça a importância do manejo sustentável e do uso racional de fungicidas.
Downloads
Referências
ADESEMOYE, A.; PERVAIZ, Z. H.; PARIKH, L.; KODATI, S.; ZHANG, Q.; STEPANOVIĆ, S.; SALEEM, M. Rhizobacterial, Fusarium complex, and fungicide seed treatments regulate shoot and root traits of soybean plants. Journal of Soil Science and Plant Nutrition, v. 21, n. 4, p. 3502-3513, 2021. DOI: https://doi.org/10.1007/s42729-021-00623-9.
ANDREOLLI, M.; LAMPIS, S.; TOSI, L.; MARANO, V.; ZAPPAROLI, G. Fungicide sensitivity of grapevine bacteria with plant growth-promoting traits and antagonistic activity as non-target microorganisms. World Journal of Microbiology and Biotechnology, v. 39, n. 5, p. 121, 2023. DOI: https://doi.org/10.1007/s11274-023-03569-5.
ASTAYKINA, A. A.; STRELETSKII, R. A.; MASLOV, M. N.; BELOV, A. A.; GORBATOV, V. S.; STEPANOV, A. L. The impact of pesticides on the microbial community of agrosoddy-podzolic soil. Eurasian Soil Science, v. 53, n. 5, p. 696-706, 2020. DOI: https://doi.org/10.1134/S1064229320050038.
BAĆMAGA, M.; WYSZKOWSKA, J.; BOROWIK, A.; KUCHARSKI, J. Effects of tebuconazole application on soil microbiota and enzymes. Molecules, v. 27, n. 21, p. 7501, 2022. DOI: https://doi.org/10.3390/molecules27217501.
BAĆMAGA, M.; WYSZKOWSKA, J.; KUCHARSKI, J. Bacterial diversity and enzymatic activity in a soil recently treated with tebuconazole. Ecological Indicators, v. 123, p. 107373, 2021. DOI: https://doi.org/10.1016/j.ecolind.2021.107373.
BAĆMAGA, M.; WYSZKOWSKA, J.; KUCHARSKI, J. Response of soil microbiota, enzymes, and plants to the fungicide azoxystrobin. International Journal of Molecular Sciences, v. 25, n. 15, p. 8104, 2024. DOI: https://doi.org/10.3390/ijms25158104.
BAIBAKOVA, E. V.; NEFEDJEVA, E. E.; SUSKA-MALAWSKA, M.; WILK, M.; SEVRIUKOVA, G. A.; ZHELTOBRIUKHOV, V. F. Modern fungicides: mechanisms of action, fungal resistance and phytotoxic effects. Annual Research & Review in Biology, v. 32, n. 3, p. 1-16, 2019. DOI: https://doi.org/10.9734/arrb/2019/v32i330083.
BARDELLI, T.; FORNASIER, F.; NOVARINA, E.; DONNIACUO, A.; ROMANO, E.; BIANCHI, P. G.; GIULINI, A. P. M. Changes in the Rhizosphere Biome Depending on the Variety of Wheat, Timing of Its Growing Season, and Agrochemical Components in the Soils of Italy. Agronomy, v. 14, n. 4, p. 832, 2024. DOI: https://doi.org/10.3390/agronomy14040832.
BECKER, M. F.; KLUEKEN, A. M.; KNIEF, C. Effects of above ground pathogen infection and fungicide application on the root-associated microbiota of apple saplings. Environmental Microbiome, v. 18, n. 1, p. 43, 2023. DOI: https://doi.org/10.1186/s40793-023-00502-z.
BONANOMI, G.; IACOMINO, G.; IDBELLA, A.; AMOROSO, G.; STAROPOLI, A.; DE SIO, A.; SACCOCCI, F.; ABD-ELGAWAD, A. M.; MORENO, M.; IDBELLA, M. Compost Tea Combined with Fungicides Modulates Grapevine Bacteriome and Metabolome to Suppress Downy Mildew. Journal of Fungi, v. 11, n. 7, p. 527, 2025. DOI: https://doi.org/10.3390/jof11070527.
BOTEVA, S. B.; KENAROVA, A. E.; PETKOVA, M. R.; GEORGIEVA, S. S.; CHANEV, C.; RADEVA, G. Soil enzyme activities after application of fungicide QuadrisR at increasing concentration rates. Plant Soil Environ, v. 68, n. 8, p. 382-392, 2022. DOI: https://doi.org/10.17221/127/2022-PSE.
CARVALHO, N. L.; PIVOTO, T. S. Ecotoxicologia: conceitos, abrangência e importância agronômica. Revista Monografias Ambientais, v. 2, n. 2, p. 176-192, 2011. DOI: https://doi.org/10.5902/223613082315.
CHOU, M. Y.; PATIL, A. T.; HUO, D.; LEI, Q.; KAO-KNIFFIN, J.; KOCH, P. Fungicide use intensity influences the soil microbiome and links to fungal disease suppressiveness in amenity turfgrass. Applied and environmental microbiology, v. 91, n. 3, p. e01771-24, 2025. DOI: https://doi.org/10.1128/aem.01771-24.
CUI, K.; XIA, X.; WANG, Y.; ZHANG, Y.; ZHANG, Y.; CAO, J.; XU, J.; DONG, F.; LIU, X.; PAN, X.; ZHENG, Y.; WU, X. Thiophanate-methyl and its major metabolite carbendazim weaken rhizobacteria-mediated defense responses in cucumbers against Fusarium wilt. Abiotech, v. 5, n. 4, p. 417-430, 2024. DOI: https://doi.org/10.1007/s42994-024-00181-5.
DELA CRUZ, J. A.; CAMENZIND, T.; RILLIG, M. C. Sub-lethal fungicide concentrations both reduce and stimulate the growth rate of non-target soil fungi from a natural grassland. Frontiers in Environmental Science, v. 10, p. 1020465, 2022. DOI: https://doi.org/10.3389/fenvs.2022.1020465.
DELA CRUZ, J. A.; CAMENZIND, T.; XU, B.; RILLIG, M. C. Limited role of fungal diversity in maintaining soil processes in grassland soil under concurrent fungicide stress. Environmental Sciences Europe, v. 36, n. 1, p. 156, 2024. DOI: https://doi.org/10.1186/s12302-024-00983-w.
DOUILLARD, J.; WHALEN, J.; LAFOND, J.; PARÉ, M. C. Soil fertility response to pruning, fungicide, and fertilization in lowbush blueberry. Canadian Journal of Soil Science, v. 105, p. 1-10, 2025. DOI: https://doi.org/10.1139/cjss-2024-0121.
FENG, D.; CHEN, J.; LI, G.; YANG, X.; XIONG, Y.; LAO, A.; HUANG, S.; ZHENG, Z. Effects of Difenoconazole and Imidacloprid Seed Coatings on Soil Microbial Community Diversity and Ecological Function. Microorganisms, v. 13, n. 4, p. 806, 2025. DOI: https://doi.org/10.3390/microorganisms13040806.
FOURNIER, B.; DOS SANTOS, S. P.; GUSTAVSEN, J. A.; IMFELD, G.; LAMY, F.; MITCHELL, E. A.; MOTA, M.; NOLL, D.; PLANCHAMP, C.; HEGER, T. J. Impact of a synthetic fungicide (fosetyl-Al and propamocarb-hydrochloride) and a biopesticide (Clonostachys rosea) on soil bacterial, fungal, and protist communities. Science of The Total Environment, v. 738, p. 139635, 2020. DOI: https://doi.org/10.1016/j.scitotenv.2020.139635.
GHINI, R. Efeito de fungicidas sobre microrganismos não alvo. Sununa Phylopalhologica, v. 19, n. 1, p. 62-63, 1993.
JIA, H.; MUHAE-UD-DIN, G.; ZHANG, H.; ZONG, Q.; ZHAO, S.; GUO, Q.; CHEN, W.; GAO, L. Characterization of rhizosphere microbial communities for disease incidence and optimized concentration of difenoconazole fungicide for controlling of wheat dwarf bunt. Frontiers in Microbiology, v. 13, p. 853176, 2022. DOI: https://doi.org/10.3389/fmicb.2022.853176.
KATSOULA, A.; VASILEIADIS, S.; SAPOUNTZI, M.; KARPOUZAS, D. G. The response of soil and phyllosphere microbial communities to repeated application of the fungicide iprodione: accelerated biodegradation or toxicity?. FEMS microbiology ecology, v. 96, n. 6, p. fiaa056, 2020. DOI: https://doi.org/10.1093/femsec/fiaa056.
KENAROVA, A.; BOTEVA, S. Fungicides in agriculture and their side effects on soil enzyme activities: a review. Bulgarian Journal of Agricultural Science, v. 29, n. 1, 2023.
KHOLOSTIAKOV, V.; BURNS, B.; RIDGWAY, H.; PADAMSEE, M. Effects of fungicides on the beneficial seed-borne microbiome and seedling development of a long-lived myrtaceae tree species. Symbiosis, v. 96, n. 2, p. 133-154, 2025. DOI: https://doi.org/10.1007/s13199-025-01064-z.
KNUTH, D.; MÄDER, P.; BOEKHORST, J.; POLL, C.; KANDELER, E.; ALAOUI, A.; HOFMAN, J.; PASKOVIĆ, I.; PASKOVIĆ, M. P.; BALDI, I.; BUREAU, M.; ALCON, F.; CONTRERAS, J.; GLAVAN, M.; ABRANTES, N.; CAMPOS, I.; NØRGAARD, T.; LWANGA, E. H.; GEISSEN, V.; HARKES, P. Beneath the Surface: Non-Target Effects of Multiple Pesticides on the Soil Microbiome in Organic and Conventional European Fields. 2025. DOI: https://dx.doi.org/10.2139/ssrn.5279860.
LANE, B. R.; KUHS, M. A.; ZARET, M. M.; SONG, Z.; BORER, E. T.; SEABLOOM, E. W.; SCHLATTER, D. C.; KINKEL, L. L. Foliar fungi-imposed costs to plant productivity moderate shifts in composition of the rhizosphere microbiome. Frontiers in Plant Science, v. 16, p. 1558191, 2025. DOI: https://doi.org/10.3389/fpls.2025.1558191.
LEITÃO, F.; PINTO, G.; HENRIQUES, I. Pinus radiata seedlings rhizobiome shifts in response to foliar and root phosphite application. European Journal of Soil Biology, v. 123, p. 103688, 2024. DOI: https://doi.org/10.1016/j.ejsobi.2024.103688.
LIAO, J.; LUO, L.; ZHANG, L.; WANG, L.; SHI, X.; YANG, H.; TAN, S.; TAN, L.; LIU, X.; WANG, D.; MAO, Z. Comparison of the effects of three fungicides on clubroot disease of tumorous stem mustard and soil bacterial community. Journal of Soils and Sediments, v. 22, n. 1, p. 256-271, 2022. DOI: https://doi.org/10.1007/s11368-021-03073-z.
LIU, L., WANG, Z., LUO, C., DENG, Y., WU, W., JIN, Y.; WANG, Y.; HUANG, H.; WEI, Z.; ZHU, Y.; HE, X.; GUO, L. Beneficial soil microbiome profiles assembled using tetramycin to alleviate root rot disease in Panax notoginseng. Frontiers in Microbiology, v. 16, p. 1571684, 2025. DOI: https://doi.org/10.3389/fmicb.2025.1571684.
LOYD, A. W.; PERCIVAL, D.; LANGILLE, M. G.; YURGEL, S. N. Changes to soil microbiome resulting from synergetic effects of fungistatic compounds pyrimethanil and fluopyram in lowbush blueberry agriculture, with nine fungicide products tested. Microorganisms, v. 11, n. 2, p. 410, 2023. DOI: https://doi.org/10.3390/microorganisms11020410.
LOYD, A. W.; PERCIVAL, D.; YURGEL, S. N. Effect of fungicide application on lowbush blueberries soil microbiome. Microorganisms, v. 9, n. 7, p. 1366, 2021. DOI: https://doi.org/10.3390/microorganisms9071366.
MEYER, C.; JEANBILLE, M.; BREUIL, M. C.; BRU, D.; HÖFER, K.; SCREPANTI, C.; PHILIPPOT, L. Soil microbial community fragmentation reveals indirect effects of fungicide exposure mediated by biotic interactions between microorganisms. Journal of Hazardous Materials, v. 470, p. 134231, 2024. DOI: https://doi.org/10.1016/j.jhazmat.2024.134231.
MEYER, M.; STEINMETZ, Z.; BERENSTEIN, G.; SCHAUMANN, G. E.; MUÑOZ, K. Agricultural Mulching and Fungicides—Impacts on Structure and Function of the Soil Microbial Community. Journal of Plant Nutrition and Soil Science, 2025. DOI: https://doi.org/10.1002/jpln.70009.
MICHALSKA-SMITH, M.; SCHLATTER, D. C.; POMBUBPA, N.; CASTLE, S. C.; GRANDY, A. S.; BORER, E. T.; SEABOLOOM, E. W.; KINKEL, L. L. Plant community richness and foliar fungicides impact soil Streptomyces inhibition, resistance, and resource use phenotypes. Frontiers in Microbiology, v. 15, p. 1452534, 2024. DOI: https://doi.org/10.3389/fmicb.2024.1452534.
NEILSON, J. A.; ROBERTSON, C. J.; SNOWDON, E. W.; YEVTUSHENKO, D. P. Impact of fumigation on soil microbial communities under potato cultivation in southern Alberta. American Journal of Potato Research, v. 97, n. 2, p. 115-126, 2020. DOI: https://doi.org/10.1007/s12230-019-09761-4.
PALBERG, D.; EMERY, R. N. Compatibility of commercial fungicide formulations with plant-associated Methylobacterium. Canadian Journal of Plant Science, v. 105, p. 1-10, 2025. DOI: https://doi.org/10.1139/cjps-2024-0169.
PENG, N.; BI, Y.; JIAO, X.; ZHANG, X.; LI, J.; WANG, Y.; YANG, S.; LIU, Z.; GAO, W. A soil fumigant increases American ginseng (Panax quinquefolius L.) survival and growth under continuous cropping by affecting soil microbiome assembly: a 4-year in situ field experiment. Microbiology Spectrum, v. 12, n. 1, p. e01757-23, 2024. DOI: https://doi.org/10.1128/spectrum.01757-23.
PEREIRA, M. G.; GALVÃO, T. F. Etapas de busca e seleção de artigos em revisões sistemáticas da literatura. Epidemiologia e Serviços de Saúde, v. 23, p. 369-371, 2014. DOI: http://dx.doi.org/10.5123/S1679-49742014000200019.
PRZEMIENIECKI, S. W.; OĆWIEJA, M.; CIESIELSKI, S.; HALECKI, W.; MATRAS, E.; GORCZYCA, A. Chemical structure of stabilizing layers of negatively charged silver nanoparticles as an effector of shifts in soil bacterial microbiome under short-term exposure. International Journal of Environmental Research and Public Health, v. 19, n. 21, p. 14438, 2022. DOI: https://doi.org/10.3390/ijerph192114438.
QIN, G.; ZHANG, Q.; ZHANG, Z.; CHEN, Y.; ZHU, J.; YANG, Y.; PEIJNENBURG, W. J. G. M.; QIAN, H. Understanding the ecological effects of the fungicide difenoconazole on soil and Enchytraeus crypticus gut microbiome. Environmental Pollution, v. 326, p. 121518, 2023. DOI: https://doi.org/10.1016/j.envpol.2023.121518.
REN, H.; WANG, H.; WANG, Q.; QI, X.; ZHANG, S.; YU, Z.; IJAZ, M.; ZHANG, M.; AHMED, T.; EL-SHARNOUBY, M.; HASSAN, M. M.; WANG, Z.; LI, B. Effect of fungicides on bayberry decline disease by modulating rhizosphere soil properties, microflora, and metabolites. Agronomy, v. 12, n. 3, p. 677, 2022. DOI: https://doi.org/10.3390/agronomy12030677.
RIEDO, J.; DUEÑAS, J. F.; MBEDI, S.; SPARMANN, S.; RILLIG, M. C. Abrupt versus gradual application of pesticides: effects on soil bacterial and fungal communities. bioRxiv, p. 2025.03. 24.644867, 2025. DOI: https://doi.org/10.1016/j.envpol.2025.126859.
ROMAN, D. L.; VOICULESCU, D. I.; FILIP, M.; OSTAFE, V.; ISVORAN, A. Effects of triazole fungicides on soil microbiota and on the activities of enzymes found in soil: A review. Agriculture, v. 11, n. 9, p. 893, 2021. DOI: https://doi.org/10.3390/agriculture11090893.
SABRA, M. A.; ALAIDAROOS, B. A.; JASTANIAH, S. D.; HEFLISH, A. I.; GHAREEB, R. Y.; MACKLED, M. I.; EL-SAADONY, M. T.; ABDELSALAM, N. R.; CONTE-JUNIOR, C. A. Comparative effect of commercially available nanoparticles on soil bacterial community and “Botrytis fabae” caused brown spot: In vitro and in vivo experiment. Frontiers in Microbiology, v. 13, p. 934031, 2022. DOI: https://doi.org/10.3389/fmicb.2022.934031.
SCHNURR, J.; FECKLER, A.; FILKER, S.; ZUBROD, J. P.; MAYER, J.; SCHÜTZENMEISTER, K.; JUNKUNST, H. F.; BUNDSCHUH, M. Fungicides affect the structure and function of soil microorganisms and the physiology of four riparian tree species–evidence from a pot experiment. Ecotoxicology and Environmental Safety, v. 302, p. 118641, 2025. DOI: https://doi.org/10.1016/j.ecoenv.2025.118641.
STRELETSKII, R.; ASTAYKINA, A.; KRASNOV, G.; GORBATOV, V. Changes in bacterial and fungal community of soil under treatment of pesticides. Agronomy, v. 12, n. 1, p. 124, 2022. DOI: https://doi.org/10.3390/agronomy12010124.
SUN, Y.; LIU, L.; ZENG, J.; WU, Y.; LIN, X. Enhanced cometabolism of benzo (a) anthracene by the lignin monomer vanillate is related to structural and functional responses of the soil microbiome. Soil Biology and Biochemistry, v. 149, p. 107908, 2020. DOI: https://doi.org/10.1016/j.soilbio.2020.107908.
TAGELE, S. B.; GACHOMO, E. W. A comparative study: impact of chemical and biological fungicides on soil bacterial communities. Environmental Microbiome, v. 20, n. 1, p. 44, 2025. DOI: https://doi.org/10.1186/s40793-025-00713-6.
TELMOSSE, G.; CHAGNON, P. L.; LAFOND, J.; PARÉ, M. C. Soil fungal communities are primarily influenced by vegetation rather than fertilizers and fungicides in a lowbush blueberry production system. Canadian Journal of Soil Science 2025. DOI: https://doi.org/10.1139/cjss-2025-0043.
VASILCHENKO, A. V.; POSHVINA, D. V.; SEMENOV, M. V.; TIMOFEEV, V. N.; IASHNIKOV, A. V.; STEPANOV, A. A.; PERVUSHINA, A. N.; VASILCHENKO, A. S. Triazoles and strobilurin mixture affects soil microbial community and incidences of wheat diseases. Plants, v. 12, n. 3, p. 660, 2023. DOI: https://doi.org/10.3390/plants12030660.
WANG, X.; LU, Z.; MILLER, H.; LIU, J.; HOU, Z.; LIANG, S.; ZHAO, X.; ZHANG, H.; BORCH, T. Fungicide azoxystrobin induced changes on the soil microbiome. Applied Soil Ecology, v. 145, p. 103343, 2020. DOI: https://doi.org/10.1016/j.apsoil.2019.08.005.
WANG, Y.; JIN, Y.; HAN, P.; HAO, J.; PAN, H.; LIU, J. Impact of soil disinfestation on fungal and bacterial communities in soil with cucumber cultivation. Frontiers in microbiology, v. 12, p. 685111, 2021. DOI: https://doi.org/10.3389/fmicb.2021.685111.
WANG, Z.; YUN, S.; AN, Y.; SHU, L.; LI, S.; SUN, K.; ZHANG, W. Effect of fungicides on soil respiration, microbial community, and enzyme activity: A global meta-analysis (1975-2024). Ecotoxicology and Environmental Safety, v. 289, p. 117433, 2025. DOI: https://doi.org/10.1016/j.ecoenv.2024.117433.
WEI, L.; ZHU, J.; ZHAO, D.; PEI, Y.; GUO, L.; GUO, J.; CUI, H.; LI, Y.; GAO, J. Microbial fungicides can positively affect aubergine photosynthetic properties, soil enzyme activity and microbial community structure. PeerJ, v. 12, p. e17620, 2024. DOI: http://doi.org/10.7717/peerj.17620.
WHITTINGTON, H. D.; SINGH, M.; TA, C.; AZCÁRATE-PERIL, M. A.; BRUNO-BÁRCENA, J. M. Accelerated biodegradation of the agrochemical ametoctradin by soil-derived microbial consortia. Frontiers in Microbiology, v. 11, p. 1898, 2020. DOI: https://doi.org/10.3389/fmicb.2020.01898.
WYDRO, U.; JABŁOŃSKA-TRYPUĆ, A.; MEDO, J.; BOROWSKI, G.; KACZYŃSKI, P.; ŁOZOWICKA, B.; WOŁEJKO, E. Effect of Pseudomonas Fluorescens on Isofetamid Dissipation and Soil Microbial Activity. Applied Sciences, v. 14, n. 23, p. 10901, 2024. DOI: https://doi.org/10.3390/app142310901.
YANG, Q.; YANG, X.; HUANG, X.; YE, W.; WANG, T.; CHENG, Z.; SHI, J.; LI, Y.; XU, J.; HE, Y. Seed coating with fungicide causes a beneficial shift in root-associated microbiomes of mature soybean. oil Science Society of America Journal, v. 87, n. 1, p. 43-62, 2023. DOI: https://doi.org/10.1002/saj2.20482.
YOU, X.; SUO, F.; YIN, S.; WANG, X.; ZHENG, H.; FANG, S.; ZHANG, C.; LI, F.; LI, Y. Biochar decreased enantioselective uptake of chiral pesticide metalaxyl by lettuce and shifted bacterial community in agricultural soil. Journal of hazardous materials, v. 417, p. 126047, 2021. DOI: https://doi.org/10.1016/j.jhazmat.2021.126047.
ZHAI, R.; SHI, M.; CHEN, P.; WANG, Y. Prothioconazole stress reduces bacterial richness and alters enzyme activity in soybean rhizosphere. Toxics, v. 12, n. 10, p. 692, 2024. DOI: https://doi.org/10.3390/toxics12100692.
ZHOU, W.; WANG, X.; JIANG, X.; LI, D.; ZHANG, M.; HUANG, D.; GUO, J.; YOU, J.; WANG, Q. Co-application of dazomet and azoxystrobin reconstructs soil microbial communities and suppresses the violet root rot of Codonopsis tangshen under a continuous cropping system. Microbiology Spectrum, v. 13, n. 9, p. e01088-25, 2025. DOI: https://doi.org/10.1128/spectrum.01088-25.
ZHU, Y.; KE, M.; YU, Z.; LEI, C.; LIU, M.; YANG, Y.; LU, T.; ZHOU, N.; PEIJNENBURG, W. J. G. M.; TANG, T.; QIAN, H. Combined effects of azoxystrobin and oxytetracycline on rhizosphere microbiota of Arabidopsis thaliana. Environment International, v. 186, p. 108655, 2024. DOI: https://doi.org/10.1016/j.envint.2024.108655