DIRECT (SI) AND INDIRECT (SLI) PROGRESSIONS IN A MODEL FOR THE TUBERCULOSIS EPIDEMIC

Authors

  • Silvana Martins Ferreira Author

DOI:

https://doi.org/10.56238/arev8n1-047

Keywords:

Tuberculosis Modeling, Direct and Indirect Progressions of Tuberculosis, Basic Tuberculosis Model

Abstract

Mathematical modeling is fundamental for investigating the spread of an infectious disease. The dynamics between compartments are studied by researchers, who have an important mission in Epidemiology, which is to make predictions based on evolution charts and the numerical data obtained. The continuous transfer between these groups of individuals organized into compartments can represent cases of infection, situations of permanent or temporary recovery from the disease. The Tuberculosis model presented in this article is expressed by a system of nonlinear ordinary differential equations. The dynamics between the compartments can be organized into two stages: direct progression (SI model) and indirect progression (SLI model). The complete model contains both types of progressions. We will initially study the direct progression and later complement it with the indirect one. The inclusion of the complete model alters the total number of people in the sick categories. Susceptible individuals may develop tuberculosis quickly or not at all. Thus, we have four categories of individuals: susceptible, latent, infected with pulmonary tuberculosis, and infected with extrapulmonary tuberculosis. Individuals who reach the latent category can be transferred to the infected categories and, once cured, return to the group. Our goal will be to perform numerical simulations, assigning values to the parameters, analyzing the effects caused by changes in this data, and making predictions. We will use the effective reproductive rate to help forecast when the disease spreads among the population and when it is eradicated.

Downloads

Download data is not yet available.

References

DYE, Christopher.; WILLIAMS, Brian. Criteria for the control of drug resistant tuberculosis. In Proceedings of the National Academy of Sciences of the United States of America (PNAS2002), v. 97, p. 8180–8185, 2000. DOI: https://doi.org/10.1073/pnas.140102797

DYE, Christopher. et al. Prospects for worldwide tuberculosis control under the whodots strategy. Lancet 352, p. 1886–1891, 1998. DOI: https://doi.org/10.1016/S0140-6736(98)03199-7

FUNDAÇÃO NACIONAL DE SAÚDE. Plano nacional de controle da tuberculose. Ministério da Saúde. 1999.

GAMA, Kamila Nancy Gonçalves da. et.al. O impacto do diagnóstico da tuberculose mediante suas representações sociais. Revista Brasileira de Enfermagem, v.72, n.5, p.1254-1261, 2019.

GOMES, Patricia Dias. Um modelo matemático para a epidemia de tuberculose. Universidade Federal Fluninense. 2004.

ORGANIZAÇÃO MUNDIAL DA SAÚDE (OMS). Treatment of tuberculosis: guidelines for national programmes. 2ª edição. Genebra: OMS, 1997.

PENNA, Maria Lúcia Fernandes. Dinâmica Epidemiológica da Tuberculose. Faculdade de Saúde Pública da Universidade de São Paulo. 1994.

QUADROS, Alessandra Sena. Modelos epidemiológicos para propagação de informação. Universidade Federal do Rio de Janeiro. 2013.

TEIXEIRA, Lucas Miléo. et.al. Concepções sobre tratamento e diagnóstico da tuberculose pulmonar para quem a vivencia. Universidade do Estado do Pará. 2023. DOI: https://doi.org/10.1590/2177-9465-ean-2022-0156pt

TELES, Pedro. Modelos compartimentais e aplicações. Revista Ciência Elementar, v. 8, n. 2. 2020. DOI: https://doi.org/10.24927/rce2020.024

Published

2026-01-07

Issue

Section

Articles

How to Cite

FERREIRA, Silvana Martins. DIRECT (SI) AND INDIRECT (SLI) PROGRESSIONS IN A MODEL FOR THE TUBERCULOSIS EPIDEMIC. ARACÊ , [S. l.], v. 8, n. 1, p. e11678 , 2026. DOI: 10.56238/arev8n1-047. Disponível em: https://periodicos.newsciencepubl.com/arace/article/view/11678. Acesso em: 11 jan. 2026.