DIGITAL PLATFORMS AS STRUCTURING VECTORS OF THE CIRCULAR ECONOMY: TRACEABILITY, GOVERNANCE, AND SOCIO-ENVIRONMENTAL IMPACT IN A BRAZILIAN CASE STUDY
DOI:
https://doi.org/10.56238/arev7n12-152Keywords:
Circular Economy, Digital Traceability, Governance, Reverse Logistics, SustainabilityAbstract
This study examines how a digital traceability platform strengthens sustainable governance within circular economy chains by integrating technological capabilities, socio-environmental impacts, and institutional restructuring. The research addresses a persistent gap in the literature regarding the operational and institutional contributions of digital platforms to the qualification of reverse flows, particularly in contexts characterized by organizational heterogeneity. To pursue this objective, a qualitative approach with a descriptive and exploratory design was adopted, grounded in a single-case study. Data collection combined a systematic literature review, documentary analysis, semi-structured interviews with key actors, and indirect observation of platform functionalities, enabling rigorous methodological triangulation. The findings reveal significant operational expansion, with more than 230,000 tons of waste compensated and approximately 750,000 tons of CO₂ equivalent avoided since the beginning of the system’s operation. The network of base organizations reached 60 cooperatives, representing an 87.5% increase from the previous cycle, while social and operational investments totaled R$ 30 million. Sectoral programs certified the recycling of 11,384 tons of plastic packaging, equivalent to 759 collection trucks, and achieved recycling rates above 93% in specific corporate initiatives. Despite these advances, methodological inconsistencies were identified, particularly regarding environmental equivalence parameters and certified mass calculations, which constrain longitudinal comparability and underscore the need for standardized and auditable procedures. Overall, the platform functions as a structuring vector of the circular economy, enhancing transparency, traceability, and systemic efficiency. However, its full consolidation depends on methodological refinement, collaborative governance, and continuous alignment with public policy frameworks.
Downloads
References
Ahmad, M., Ghadimi, P., Hargaden, V., & Papakostas, N. (2025). Blockchain technology for circular economy: Review of strategies with focus on product end-of-life. IFAC-PapersOnLine, 59(10), 2790–2795. https://doi.org/10.1016/j.ifacol.2025.09.469
Akbar, A., & Awan, U. (2024). Towards circular economy: A IoT-enabled framework for circular supply chain integration. Journal of Cleaner Production, 441, 141–159.
Azevedo, M. (2017). Economia circular e inovação organizacional. Lisboa: Universidade Nova.
Bai, Y., Hu, Q., Seo, S.-H., Kang, K., & Lee, J. J. (2022). Public participation consortium blockchain for smart city governance. IEEE Internet of Things Journal, 9(3), 2094–2108. https://doi.org/10.1109/JIOT.2021.3091151
Biswas, S., Yao, Z., Yan, L., Alqhatani, A., Bairagi, A. K., Asiri, F., & Masud, M. (2023). Interoperability benefits and challenges in smart city services: Blockchain as a solution. Electronics, 12(4), 1036. https://doi.org/10.3390/electronics12041036
Blackburn, O., Ritala, P., Keränen, J., & Bocken, N. (2025). Circular economy platforms: A systematic review. Business Strategy and the Environment, bse.70307. https://doi.org/10.1002/bse.70307
Caprotti, F. (2012). The cultural economy of cleantech. Journal of Cleaner Production, 32, 9–17. https://doi.org/10.1016/j.jclepro.2012.03.028
Cervo, A. L., & Bervian, P. A. (2002). Metodologia científica (5a ed.). Prentice Hall.
Cleantech Group. (2024). Global Cleantech 100: Innovating for Net-Zero. Recuperado em 04 fevereiro 2025, de https://www.cleantech.com
Cromwell, J., Turkson, C., Dora, M., & Yamoah, F. A. (2025). Digital technologies for traceability and transparency in the global fish supply chains: A systematic review and future directions. Marine Policy, 178(106700), 106700. https://doi.org/10.1016/j.marpol.2025.106700
Dante, A. (2024). Modelagem de fluxos reversos e variabilidade de materiais em cadeias circulares. São Paulo: Universidade de São Paulo.
Denzin, N., & Lincoln, Y. (2018). The SAGE handbook of qualitative research (5th ed.). Thousand Oaks: Sage.
Drescher, D. (2017). Blockchain basics: A non-technical introduction in 25 steps. New York: Springer.
Duman Altan, A., Beyca, Ö. F., & Zaim, S. (2024). Link between digital technologies adoption and sustainability performance: Supply chain traceability/resilience or circular economy practices. Sustainability,16(19), 8694. https://doi.org/10.3390/su16198694
Dutta, P., Kumar, S., & Yadav, N. (2024). Blockchain technology in the food supply chain: A way towards circular economy and sustainability. Food & Function, 16(4), 2051–2073.
Ellen MacArthur Foundation. (2021). Circular economy and digital systems: Opportunities for scaling circularity. Recuperado em 04 fevereiro 2025, de https://ellenmacarthurfoundation.org
Fernandez-Carames, T. M., Blanco-Novoa, O., Froiz-Miguez, I., & Fraga-Lamas, P. (2024). Towards an autonomous industry 4.0 warehouse: A UAV and blockchain-based system for inventory and traceability applications in big data-driven supply chain management. Em arXiv [cs.CR]. https://doi.org/10.48550/ARXIV.2402.00709
Firouzian-Haji, S., Eshghollahi, S. E., Ziari, M., Tavakkoli-Moghaddam, R., & Rezaei, P. (2025). A blockchain-based approach to enhance transparency and sustainability in a joint pricing and closed-loop supply chain network design problem. Journal of Environmental Management, 394(127463), 127463. https://doi.org/10.1016/j.jenvman.2025.127463
França, A. S. L., Amato Neto, J., Gonçalves, R. F., & Almeida, C. M. V. B. (2020). Proposing the use of blockchain to improve the solid waste management in small municipalities. Journal of Cleaner Production, 244(118529), 118529. https://doi.org/10.1016/j.jclepro.2019.118529
Geels, F. (2004). From sectoral systems of innovation to socio-technical systems. Research Policy, 33(6–7), 897–920. https://doi.org/10.1016/j.respol.2004.01.015
Gil, A. C. (2019). Métodos e técnicas de pesquisa social (7ª ed.). Atlas.
Guide, V., Souza, G., & Ketzenberg, M. (2002). The role of information quality in remanufacturing. Production and Operations Management, 11(3), 364–378.
IEA. (2023). Energy Technology Perspectives 2023. International Energy Agency. Recuperado em 04 fevereiro 2025, de https://www.iea.org
IPCC. (2023). Sixth Assessment Report: Synthesis Report. Intergovernmental Panel on Climate Change. Recuperado em 04 fevereiro 2025, de https://www.ipcc.ch
IRENA. (2023). World Energy Transitions Outlook 2023. International Renewable Energy Agency. Recuperado em 04 fevereiro 2025, de https://www.irena.org
Kamble, S. S., Gunasekaran, A., Kumar, V., Belhadi, A., & Foropon, C. (2021). A machine learning based approach for predicting blockchain adoption in supply Chain. Technological Forecasting and Social Change, 163(120465), 120465. https://doi.org/10.1016/j.techfore.2020.120465
Kouhizadeh, M., Saberi, S., & Sarkis, J. (2021). Blockchain technology and the sustainable supply chain: Theoretically exploring adoption barriers. International Journal of Production Economics, 231(107831), 107831. https://doi.org/10.1016/j.ijpe.2020.107831
Lakatos, E. M., & Marconi, M. A. (2017). Fundamentos de metodologia científica (8a ed.). Atlas.
Lieder, M., & Rashid, A. (2016). Towards circular economy implementation. Journal of Cleaner Production, 115, 36–51.
Liu, L., Song, W., & Liu, Y. (2023). Leveraging digital capabilities toward a circular economy: Reinforcing sustainable supply chain management with Industry 4.0 technologies. Computers & Industrial Engineering, 178(109113), 109113. https://doi.org/10.1016/j.cie.2023.109113
Luna-Reyes, L., & Gil-García, J. (2014). Digital government and public governance. Government Information Quarterly, 31(1), 6–17.
Meijer, A., & Bolívar, M. P. R. (2016). Governing the smart city: a review of the literature on smart urban governance. International Review of Administrative Sciences, 82(2), 392–408. https://doi.org/10.1177/0020852314564308
Mendes, R. (2023). Digitalização e rastreabilidade na construção civil. Revista Brasileira de Inovação, 22(4), 134–159.
Merriam, S. B., & Tisdell, E. J. (2015). Qualitative research: A guide to design and implementation (4 th ed.). Jossey-Bass.
Minayo, M. (2014). O desafio do conhecimento: Pesquisa qualitativa em saúde. São Paulo: Hucitec.
Mishra, D., Rana, N., & Dwivedi, Y. (2023). Leveraging digital capabilities toward a circular economy: Reinforcing sustainable supply chain management with Industry 4.0 technologies. Technological Forecasting & Social Change, 196, 122–145.
Muni Lavanya, B. (2018). Blockchain technology beyond bitcoin: An overview. Ijcsma.com. Recuperado 4 de dezembro de 2025, de https://www.ijcsma.com/articles/blockchain-technology-beyond-bitcoin-an-overview.pdf
Noronha, D. (2022). Plataformas digitais e redes colaborativas na reciclagem. Revista de Gestão Ambiental, 26(3), 44–61.
OECD. (2022). Digital for Circular Economy: Emerging approaches and policy considerations. Organisation for Economic Co-operation and Development. Recuperado em 04 fevereiro 2025, de https://www.oecd.org
Pernick, R., & Wilder, C. (2007). The clean tech revolution. New York: HarperCollins.
Porter, M., & Heppelmann, J. (2014). How smart connected products are transforming competition. Harvard Business Review, 92(11), 64–88.
Porter, M., & Van Der Linde, C. (1995). Toward a new conception of the environment-competitiveness relationship. Journal of Economic Perspectives, 9(4), 97–118.
Rajput, D. V., More, P. R., Adhikari, P. A., & Arya, S. S. (2025). Blockchain technology in the food supply chain: a way towards circular economy and sustainability. Sustainable Food Technology, 3(4), 930–946. https://doi.org/10.1039/d5fb00065c
Reyna, A., Martin, C., Chen, J., Soler, E., & Díaz, M. (2018). On blockchain and IoT. Future Generation Computer Systems, 88, 173–190.
Risso, L. A., Ganga, G. M. D., Godinho Filho, M., Santa-Eulalia, L. A. Chikhi, T., & Mosconi, E. (2023). Present and future perspectives of blockchain in supply chain management: A review of reviews and research agenda. Computers & Industrial Engineering, 183, 109195. https://doi.org/10.1016/j.cie.2023.109195
Romagnoli, S., Tarabu’, C., Maleki Vishkaei, B., & De Giovanni, P. (2023). The impact of digital technologies and sustainable practices on circular supply chain management. Logistics, 7(1), 1. https://doi.org/10.3390/logistics7010001
Saberi, S., Kouhizadeh, M., Sarkis, J., & Shen, L. (2019). Blockchain technology and sustainable supply chains. International Journal of Production Research, 58(7), 2063–2081.
Schmidt, C. M., & Weber, T. (Eds.). (2024). Digitale enabler der Kreislaufwirtschaft. acatech – Deutsche Akademie der Technikwissenschaften. Recuperado 4 de dezembro de 2025, de https://www.acatech.de/publikation/digitale-enabler-der-kreislaufwirtschaft/
Shojaei, A., Ketabi, R., Razkenari, M., Hakim, H., & Wang, J. (2021). Enabling a circular economy in the built environment sector through blockchain technology. Journal of Cleaner Production, 294(126352), 126352.
Shakeel, S. R. (2021). Cleantech: Prospects and Challenges. Journal of Innovation Management, 9(2), VIII–XVII. https://doi.org/10.24840/2183-0606_009.002_0002
Schöggl, J.-P., Rusch, M., Stumpf, L., & Baumgartner, R. J. (2023). Implementation of digital technologies for a circular economy and sustainability management in the manufacturing sector. Sustainable Production and Consumption, 35, 401–420. https://doi.org/10.1016/j.spc.2022.11.012
Souza, F. R. (2024). Aplicação da blockchain e IOT na gestão da cadeia de suprimentos: Um estudo de caso sobre rastreabilidade. Revista produção online, 23(3), 5016. https://doi.org/10.14488/1676-1901.v23i3.5016
Stake, R. E. (1995). The art of case study research. Sage.
Turskis, Z., & Šniokienė, V. (2024). IoT-driven transformation of circular economy efficiency: An overview. Mathematical & Computational Applications, 29(4), 49. https://doi.org/10.3390/mca29040049
World Economic Forum & Ellen MacArthur Foundation. (2016). Intelligent assets: Unlocking the circular economy potential. Ellen MacArthur Foundation. Ellenmacarthurfoundation.org. Recuperado 3 de dezembro de 2025, de https://content.ellenmacarthurfoundation.org/m/1111b850c4a5e68e/original/Intelligent-assets-Unlocking-the-circular-economy-potential.pdf?_gl=1*rkz19o*_ga*MzA4MzYwMzg3LjE3NjQ3Nzc4MDA.*_ga_V32N675KJX*czE3NjQ3Nzc3OTckbzEkZzEkdDE3NjQ3NzgwOTEkajU2JGwwJGgw*_gcl_au*MTcxNjc3MDE1MS4xNzY0Nzc3ODI3
World Economic Forum. (2023). Global Risks Report 2023. Recuperado em 04 fevereiro 2025, de https://www.weforum.o
Wu, H., Li, S., Hou, W., & Zhang, X. (2024). Leveraging digital platforms for circular economy: A value creation view. Sustainability, 16(24), 11180. https://doi.org/10.3390/su162411180
Wuebbles, D. J., Fahey, D. W., Hibbard, K. A., DeAngelo, B., Doherty, S., Hayhoe, K., Horton, R., Kossin, J. P., Taylor, P. C., Waple, A. M., & Yohe, C. P. (2017). Executive summary. Climate science special report: Fourth national climate assessment, volume I. U.S. Global Change Research Program.
Yin, R. (2015). Case study research: Design and methods (5th ed.). Thousand Oaks: Sage.
Zhou, Y., Yan, S., Li, G., Xiong, Y., & Lin, Z. (2023). The impact of consumer skepticism on blockchain-enabled sustainability disclosure in a supply chain. Transportation Research Part E: Logistics and Transportation Review, 178, 103323. https://doi.org/10.1016/j.tre.2023.103323
