APÓSITOS A BASE DE POLIURETANO POLIMÉRICO PARA EL TRATAMIENTO DE ÚLCERAS NEUROPÁTICAS: UNA REVISIÓN BIBLIOGRÁFICA

Autores/as

  • Rita de Cássia Santos Ponciano Autor/a
  • Érica do Nascimento Lima da Fonseca Bulhões Autor/a
  • Iasmyn de Souza Lipkit Autor/a
  • Debora Lopes Emerich Pereira Autor/a
  • Regina Felipe do Ó Autor/a
  • Gisele Cristina Valle Iulianelli Autor/a

DOI:

https://doi.org/10.56238/arev7n9-067

Palabras clave:

Úlceras, Diabetes, Apósitos, Polímeros, Heridas

Resumen

Las úlceras cutáneas son lesiones cutáneas que, según su extensión y grado de infección, pueden causar complicaciones graves en los tejidos epiteliales. Las personas con diabetes son más propensas a desarrollar úlceras neuropáticas en las extremidades inferiores, conocidas como úlceras del pie diabético. Estas heridas crónicas representan un gran desafío para la medicina y son la segunda causa principal de amputaciones de pie en Brasil. Dada esta prerrogativa, se hace evidente la necesidad de desarrollar apósitos eficaces para el tratamiento y control de esta enfermedad. El desarrollo de sistemas de apósitos basados ​​en polímeros sintéticos, como el poliuretano (PU), ha demostrado ser una alternativa prometedora para tratar y ralentizar la progresión de algunas enfermedades, incluidas las úlceras del pie diabético. Este trabajo consiste en una revisión bibliográfica reciente que incluye estudios que proponen nuevos enfoques terapéuticos utilizando poliuretano como material polimérico combinado con bioactivos para el tratamiento de úlceras neuropáticas. La literatura revisada destaca el gran potencial del PU en este tipo de aplicación, demostrando su contribución para acelerar el proceso de cicatrización de estas heridas, lo que puede mejorar significativamente la calidad de vida de los pacientes con esta afección.

Descargas

Los datos de descarga aún no están disponibles.

Referencias

ABRISHAM, M.; NOROOZI, M.; PANAHI-SARMAD, M.; ARJMAND, M.; GOODARZI, V.; SHAKERI, Y.; GOLBATEN-MOFRAD, H. DEHGHAN, P.; SAHZABI, A.; SADRI, M. The role of polycaprolactone-triol (PCL-T) in biomedical applications: a state-of-the-art review. European Polymer Journal, [S.L.], v. 131, p. 109701, maio 2020. Elsevier BV. http://dx.doi.org/10.1016/j.eurpolymj.2020.109701. DOI: https://doi.org/10.1016/j.eurpolymj.2020.109701

AHMED, A.; ANTONSEN, E. Immune and vascular dysfunction in diabetic wound healing. Journal of Wound Care, 2016, 2016, 25, S35– S46 DOI: https://doi.org/10.12968/jowc.2016.25.Sup7.S35

ALMASIAN A, NAJAFI F, EFTEKHARI M, SHAMS ARDEKANI MR, SHARIFZADEH M, KHANAVI M. Preparation of Polyurethane/Pluronic F127 Nanofibers Containing Peppermint Extract Loaded Gelatin Nanoparticles for Diabetic Wounds Healing: Characterization, In Vitro, and In Vivo Studies. Evidence-Based Complementary and Alternative Medicine. 2021 15; 2021:6646702. doi: 10.1155/2021/6646702. DOI: https://doi.org/10.1155/2021/6646702

BAHIA L. O alto custo do pé diabético no Brasil. Sociedade Brasileira de Diabetes 2018. Disponível em https://www.diabetes.org.br/publico/ultimas/1609-o-alto-custo-do-pe-diabetico-no-brasil

BARRETT, E.J., LIU, Z.; KHAMAISI, M.;KING, G.L.; KLEIN R.; KLEIN, B.E.K.; HUGHES, T.M.; CRAFT, S.; FREEDMAN, B.I.; BOWDEN, D.W.; VINIK, A.I.; CASELLINI; C.M. Diabetic Microvascular Disease: An Endocrine Society Scientific Statement The Journal of Clinical Endocrinology & Metabolism, Volume 102, Issue 12, 1 December 2017, Pages 4343–4410, https://doi.org/10.1210/jc.2017-01922. DOI: https://doi.org/10.1210/jc.2017-01922

BARU, S.-I.; MATTHEWS, S.; MARCHESE, E.; WALSH, P.; COFFEY, A. The Effect of Sub- and Near-Critical Carbon Dioxide Assisted Manufacturing on Medical Thermoplastic Polyurethane. Polymers 2023, 15, 822. https://doi.org/10.3390/polym15040822 DOI: https://doi.org/10.3390/polym15040822

BOATENG, J.; CATANZANO, O. Advanced Therapeutic Dressings for Effective Wound Healing. A Review. Journal of Pharmaceutical Sciences, 104(11): 3653-3680, 2015 DOI: https://doi.org/10.1002/jps.24610

BUJOK, S.; PETER, J.; HALECKÝ, M.; ECORCHARD, P; MACHÁLKOVÁ, A.; MEDEIROS, G; HODAN, J.; PAVLOVA, E.; BENEŁ, H. Sustainable microwave synthesis of biodegradable active packaging films based on polycaprolactone and layered ZnO nanoparticles. Polymer Degradation and Stability, [S.L.], v. 190, p. 109625, ago. 2021. Elsevier BV. http://dx.doi.org/10.1016/j.polymdegradstab. 2021.109625. DOI: https://doi.org/10.1016/j.polymdegradstab.2021.109625

CARAYON, I.; SZARLE, J. P.; GNATOWSKI, P.; PIŁAT, E.; SIENKIEWICZ, M.; GLINKA, M.; KARCZEWSKI, J.; KUCIŃSKA-LIPKA, J. Polyurethane based hybrid

ciprofloxacin-releasing wound dressings designed for skin engineering purposes. Adv Med Sci. 2022 Sep;67(2): 269-282.doi: 10.1016/j.advms.2022.05.003. DOI: https://doi.org/10.1016/j.advms.2022.05.003

Epub 2022 Jul 13. PMID: 35841880.

CHOGAN, F.; MIRMAJIDI, T.; REZAYAN, A. H.; SHARIFI, A.M.; GHAHARY, A.

NOURMOHAMMADI, J.; KAMALI, A.; RAHAIE, M. Design, fabrication, and optimization of a dual function three-layer scaffold for controlled release of metformin hydrochloride to alleviate fibrosis and accelerate wound healing. Acta Biomaterialia, [S.L.], v. 113, p. 144-163, set. 2020.Elsevier BV. http://dx.doi.org/10.1016/j.actbio.2020.06.031. DOI: https://doi.org/10.1016/j.actbio.2020.06.031

DHIVYA, S.; PADMA, V. V.; SANTHINI, E. Wound dressings– a review. Biomedicine, [S.L.], v. 5, n. 4, p. 24-28, 28 nov. 2015. China Medical University. http://dx.doi.org/10.7603/s40681-015-0022-9. Acesso em 10/06/2023. DOI: https://doi.org/10.7603/s40681-015-0022-9

GONÇALVES, R. V.; COSTA, A.; GRZESKOWIAK, L. Oxidative Stress and Tissue Repair: Mechanism, Biomarkers, and Therapeutics. Oxidative Medicine and Cellular Longevity, v. 2021, 2021. DOI: https://doi.org/10.1155/2021/6204096

HARDT, J. C.; PELLÁ, M. C. G.; MEIRA, A. C. R.; ROSENBERGER, A. G.; CAETANO, J.; DRAGUNSKI, D. C. Potential wound dressings from electrospun medicated poly(butylene-adipate-co-terephthalate)/poly-(ε-caprolactone) microfibers. Journal Of Molecular Liquids, [S.L.], v. 339, p. 116694, out. 2021. Elsevier BV.http://dx.doi.org/10.1016/j.molliq.2021.116694. DOI: https://doi.org/10.1016/j.molliq.2021.116694

HEATH, D.E.; COOPER, S.L. Polymers: basic principles. IN: Ratner, B.D.; Hoffman, A.S.; Schoen, F.J.; Lemons, J.E. (Eds.). Biomaterials Science: An Introduction to Materials in Medicine. 3ª edição. Oxford, Elsevier, 2013, capítulo I.2.2, 64-78

LUNEVA O, OLEKHNOVICH R, USPENSKAYA M. BILAYEr Hydrogels for Wound Dressing and Tissue Engineering. Polymers (Basel). 2022 Aug 1;14(15):3135. doi: 10.3390/polym14153135. PMID: 35956650; PMCID: PMC9371176. DOI: https://doi.org/10.3390/polym14153135

IDF- International Diabetes Federation. Diabetic Atlas, 9th edn. Brussels, Belgium, 2019. Acesso em 04/05/2023 http://www.diabetesatlas.org.

JEFFCOATE, WJ; VILEIKYTE, L.; BOYKO E.J.; ARMSTRONG, D.G.; BOULTON, A.J.M. Current challenges and opportunities in the prevention and management of diabetic foot ulcers. Diabetes Care 2018; 41(4): 645-652 DOI: https://doi.org/10.2337/dc17-1836

KUMAR, A.; WANG, X.; NUNE, K.C.; MISRA, R. Biodegradable hydrogel-based biomaterials with high absorbent properties for non-adherent wound dressing. International Wound Journal. 2017, 14, 1076–1087. DOI: https://doi.org/10.1111/iwj.12762

KUCINSKA‑LIPKA, J.; GUBANSKA, I.; LEWANDOWSKA, A.; TEREBIENIEC, A.; PRZYBYTEK, A.; CIEŚLIŃSKI, H. Antibacterial polyurethanes, modified with cinnamaldehyde, as potential materials for fabrication of wound dressings https://doi.org/10.1007/s00289-018-2512-x Polymer Bulletin (2019) 76:2725–2742 DOI: https://doi.org/10.1007/s00289-018-2512-x

LAZZARINI, P.A.; CREWS, R.T.; VAN NETTEN JJ, BUS SA, FERNANDO ME, CHADWICK PJ, NAJAFI B. Measuring Plantar Tissue Stress in People With Diabetic Peripheral Neuropathy: A Critical Concept in Diabetic Foot Management. Journal Diabetes Sci Technol. 2019 Sep;13(5):869-880. doi: 10.1177/1932296819849092. Epub 2019 Apr 29. PMID: 31030546; PMCID: PMC6955461. DOI: https://doi.org/10.1177/1932296819849092

LIU, H.; LI, Z.; Y; ZHAO, Y.; FENG, Y.; ZVYAGIN, A.V.; WANG, J.; YANG, X; YANG, B.; LIN, Q. Novel Diabetic Foot Wound Dressing Based on Multifunctional Hydrogels with Extensive Temperature-Tolerant, Durable, Adhesive, and Intrinsic Antibacterial Properties doi: 10.1021/acsami.1c05514. PubMed, 2021. DOI: https://doi.org/10.1021/acsami.1c05514

LI, W.; WU, D.; ZHU, S.; LIU, Z.; LUO, B.; LU, L.; ZHOU, C. Sustained release of plasmid DNA from PLA/POSS nanofibers for angiogenic therapy. Chemical Engineering Journal, [S.L.], v. 365, p. 270-281, jun. 2019. Elsevier BV. http://dx.doi.org/10.1016/j.cej.2019.02.043. DOI: https://doi.org/10.1016/j.cej.2019.02.043

LUO, M.; SHAITAN, K.; QU, X.; BONARTSEV, A.P.; LEI, B. Bioactive rare earth-based inorganic-organic hybrid biomaterials for wound healing and repair. Applied Materials Today, [S.L.], v. 26, p. 101304-16, mar. 2022. Elsevier BV. http://dx.doi.org/10.1016/j.apmt.2021.101304. DOI: https://doi.org/10.1016/j.apmt.2021.101304

MOGOŠANU, G.D.; GRUMEZESCU, A.M. Natural and synthetic polymers for wounds and burns dressing, International Journal of Pharmaceutics, 463: 127–136, 2014. DOI: https://doi.org/10.1016/j.ijpharm.2013.12.015

MOURA, M.R.T; DOWSETT, C; BAIN, K. BAIN M (2020) Advancing practice in holistic wound management: a consensus-based call to action. Wounds International 11(4): 70–5 Murphy C, Atkin L, Swanson T et al (2020) International consensus document. Defying hard-to-heal wounds with an early antibiofilm intervention strategy: wound hygiene. 29(Suppl 3b): S1–28 Journal Wound Care

MOURA, L.I.F.; DIAS, A.M.A.; CARVALHO, E.; SOUSA, H.C. Recent advances on the development of wound dressings for diabetic foot ulcer treatment. A review. Acta Biomater 9: 7093–7114, 2013 DOI: https://doi.org/10.1016/j.actbio.2013.03.033

NIU, W.; CHEN, M.; GUO, Y.; WANG, M.; LUO, M.; CHENG, W.; WANG, Y.; LEI, B. A Multifunctional Bioactive Glass-Ceramic Nanodrug for Post-Surgical Infection/Cancer Therapy-Tissue Regeneration. Acs Nano, [S.L.], v. 15, n. 9, p. 14323-14337, 7 set. 2021. American Chemical Society (ACS). http://dx.doi.org/10.1021/acsnano.1c03214. DOI: https://doi.org/10.1021/acsnano.1c03214

PIAGGESI, A; GORETTI, C.; IACOPI, E.; CLERICI, G.; ROMAGNOLI, F.; TOSCANELLA, F.; VERMIGLI, C. Comparison of Removable and Irremovable Walking Boot to Total Contact Casting in Offloading the Neuropathic Diabetic Foot Ulceration. Foot Ankle Int. 2016 Aug;37(8):855-61. doi: 10.1177/1071100716643429. Epub 2016 Apr 15. PMID: 27083507. DOI: https://doi.org/10.1177/1071100716643429

PRIYADARSINI, S.L.; SURESH, M.; NIKHILA, G. Assessment framework for the selection of a potential interactive dressing material for diabetic foot ulcer. Heliyon. 2023 May 22;9(6) e16476. doi: 10.1016/j.heliyon. 2023.e16476. PMID: 37292346; PMCID: PMC10245162.

PYUN, D.G.; CHOI, H.J; YOON, H.S.; THAMBI, T.; LEE, D.S. Polyurethane foam containing rhEGF as a dressing material for healing diabetic wounds: Synthesis, characterization, in vitro and in vivo studies. Colloids Surf B Biointerfaces. 2015 Nov 1; 135:699-706. doi: 10.1016/j.colsurfb.2015.08.029. Epub 2015 Aug 24. DOI: https://doi.org/10.1016/j.colsurfb.2015.08.029

OJEDA-MARTÍNEZ, M. L; YÁÑEZ-SÁNCHEZ, I.; VELÁSQUEZ-ORDOÑEZ, C.; MARTÍNEZ-PALOMAR, M. M; ÁLVAREZ-RODRÍGUEZ, A.; A GARCIA-SÁNCHEZ, M.; ROJAS-GONZÁLEZ, F.; GÁLVEZ-GASTÉLUM, F. J. Skin wound healing with chitosan thin films containing supported silver nanospheres. Journal Of Bioactive and Compatible Polymers, [S.L.], v. 30, n. 6, p. 617-632, 16 jun. 2015. SAGE Publications. http://dx.doi.org/10.1177/0883911515590495. DOI: https://doi.org/10.1177/0883911515590495

ROCHA, A. M.; QUINTELLA, C. M.; TORRES, E. A. Prospecção de artigos e patentes sobre polímeros biocompatíveis aplicados à Engenharia de Tecidos e Medicina Regenerativa. Cadernos de Prospecção, v. 5, n. 2, p. 72, 2014. DOI: https://doi.org/10.9771/S.CPROSP.2012.005.008

ROGNONI, E.; WATT, F. M. Skin Cell Heterogeneity in Development,

Wound Healing, and Cancer. Trends In Cell Biology, [S.L.], v. 28, n. 9, p. 709-722, set. 2018. Elsevier BV. http://dx.doi.org/10.1016/j.tcb.2018.05.002. DOI: https://doi.org/10.1016/j.tcb.2018.05.002

SAFARI, B; AGHAZADEH, M.; D., S.; ROSHANGAR, L. Exosome-loaded hydrogels: a new cell-free therapeutic approach for skin regeneration. European Journal of Pharmaceutics and Biopharmaceutics, [S.L.], v. 171, p. 50-59, fev. 2022. Elsevier BV. http://dx.doi.org/10.1016/j.ejpb.2021.11.002. DOI: https://doi.org/10.1016/j.ejpb.2021.11.002

SEGGIANI, M.; ALTIERI, R.; PUCCINI, M.; STEFANELLI, E.; ESPOSITO, A.; CASTELLANI, F.; STANZIONE, V.; VITOLO, S. Polycaprolactone-collagen hydrolysate thermoplastic blends: processability and biodegradability/ compostability. Polymer Degradation and Stability, [S.L.], v.150, p. 13-24, abr. 2018. Elsevier BV. DOI: https://doi.org/10.1016/j.polymdegradstab.2018.02.001

http://dx.doi.org/10.1016/j.polymdegradstab.2018.02.001 DOI: https://doi.org/10.1016/j.polymdegradstab.2018.02.001

SBD -Sociedade Brasileira de Diabetes - Diretriz da Sociedade Brasileira de Diabetes Diretriz da Sociedade Brasileira de Diabetes. Atualização Brasileira sobre Diabetes. EDIÇÃO 2023 https://diretriz.diabetes.org.br/

SBD Sociedade Brasileira de Diabetes -Diretriz SBD,

Diretriz da Sociedade Brasileira de Diabetes EDIÇÃO 2022 https://diretriz.diabetes.org.br/

SHAW, P., SHARMA A. K., KALONIA A., SHUKLA,S. K. Vascular perfusion: A predictive tool for thermal burn injury-Journal of Tissue Viability, 2020, 29, 48–50 https://doi.org/10.1016/j.jtv..12.002. DOI: https://doi.org/10.1016/j.jtv.2019.12.002

SHEN, X.; SHAMSHINA, J.L.; BERTON, P.; GURAU, G.; ROGERS, R.D. Hydrogels based on cellulose and chitin: fabrication, properties, and applications. Green Chemical. 18: 53–75, 2016. DOI: https://doi.org/10.1039/C5GC02396C

THOMAS, M. S.; PILLAI, P.K. S.; FARIA, M.; CORDEIRO, N.; BARUD, H.; THOMAS, S.; POTHEN, L. A. Electrospun polylactic acidchitosan composite: a bio-based alternative for inorganic composites for advanced application. Journal Of Materials Science: Materials in Medicine, [S.L.], v. 29, n. 9, p. 1-12, 17 ago. 2018. Springer Science and Business Media LLC. http://dx.doi.org/10.1007/s10856-018-6146-1. DOI: https://doi.org/10.1007/s10856-018-6146-1

TSIAPLA, A.R.; KARAGKIOZAKI, V.; PAPPA, F.; BAKOLA, V.; CHOLIPAPADOPOULOU, TH.; MOUTSIOS, I.; PAVLIDOU, E.; LASKARAKIS, A.; LOGOTHETIDIS, S. Drug delivery nanoplatform for orthopaedic-associated infections. Materials Today: Proceedings, [S.L.], v. 4, n. 7, p. 6880-6888, 2017. Elsevier BV. http://dx.doi.org/10.1016/j.matpr.2017.07.017. DOI: https://doi.org/10.1016/j.matpr.2017.07.017

TU, Z.; CHEN, M.; WANG, M.; SHAO, Z.; JIANG, X.; WANG, K.; YAO, Z.; YANG, S.; ZHANG, X.; GAO, W. Engineering Bioactive M2 Macrophage‐Polarized Anti‐Inflammatory, Antioxidant, and Antibacterial Scaffolds for Rapid Angiogenesis and Diabetic Wound Repair. Advanced Functional Materials, [S.L.], v. 31, n. 30, p. 2100924, 26 maio 2021. Wiley.http://dx.doi.org/10.1002/Adfm.202100924 DOI: https://doi.org/10.1002/adfm.202100924

VAHEDI, P.; JAROLMASJED, S.; SHAFAEI, H.; ROSHANGAR, L.; RAD, J. S.; AHMADIAN, E. In vivo articular cartilagem regeneration through infrapatellar adipose tissue derived stem cell in nanofiber polycaprolactone scaffold. Tissue And Cell, [S.L.], v. 57, p. 49-56, abr. 2019. Elsevier BV. http://dx.doi.org/10.1016/j.tice.2019.02.002. DOI: https://doi.org/10.1016/j.tice.2019.02.002

44.WANG, C.; MENG, C.; ZHANG, Z.; ZHU, Q. 3D printing of polycaprolactone/bioactive glass composite scaffolds for in situ bone repair. Ceramics International, [S.L.], v. 48, n. 6, p. 7491-7499, mar. 2022. Elsevier BV. http://dx.doi.org/10.1016/j.ceramint.2021.11.293. Acesso em 29/05/2023. DOI: https://doi.org/10.1016/j.ceramint.2021.11.293

WANG, H., XU, Z., ZHAO, M., LIU, G., & WU, J. (2021). Advances of hydrogel dressings in diabetic wounds. Biomaterials Science, 9(5), 1530–1546. https://doi.org/10.1039/d0bm01747g. DOI: https://doi.org/10.1039/D0BM01747G

WANG, Y.; BEEKMAN, J.; HEW, J.; JACKSON, S.; ISSLERFISHER, A. C.; PARUNGAO, R.; LAJEVARDI, S.S.; LI, Z. MAITZ, P. K.M. B: challenges and advances in burn wound healing, infection, pain and scarring. Advanced Drug Delivery Reviews, [S.L.], v. 123, p. 3-17, jan. 2018. Elsevier BV. http://dx.doi.org/10.1016/j.addr.2017.09.018. DOI: https://doi.org/10.1016/j.addr.2017.09.018

WAGNER, W.F.: The dysvascular foot: a system for diagnosis and treatment. Foot Ankle 2: 64-122, 1981 DOI: https://doi.org/10.1177/107110078100200202

ZHANG, J.; MARTIN, D.J.; TARAN, E.; THURECHT, K.J.; MINCHIN, R.F. Effect of supercritical carbon dioxide on the loading and release of model drugs from polyurethane films: comparison with solvent casting, Macromol. Chemistry and Physics. 215: 54–64, 2014. DOI: https://doi.org/10.1002/macp.201300492

ZHANG, K; LI, G-H; SHI, Yu-Dong; CHEN, Yi-Fu; ZENG, J-B; WANG, M. Crystallization kinetics and morphology of biodegradable Poly(ε-caprolactone) with chain-like distribution of ferroferric oxide nanoparticles: toward mechanical enhancements. Polymer, [S.L.], v. 117, p. 84-95, maio 2017. Elsevier BV. http://dx.doi.org/10.1016/j.polymer.2017.04.023. DOI: https://doi.org/10.1016/j.polymer.2017.04.023

Publicado

2025-09-09

Número

Sección

Artigos

Cómo citar

PONCIANO, Rita de Cássia Santos; BULHÕES, Érica do Nascimento Lima da Fonseca; LIPKIT, Iasmyn de Souza; PEREIRA, Debora Lopes Emerich; DO Ó, Regina Felipe; IULIANELLI, Gisele Cristina Valle. APÓSITOS A BASE DE POLIURETANO POLIMÉRICO PARA EL TRATAMIENTO DE ÚLCERAS NEUROPÁTICAS: UNA REVISIÓN BIBLIOGRÁFICA. ARACÊ , [S. l.], v. 7, n. 9, p. e7929, 2025. DOI: 10.56238/arev7n9-067. Disponível em: https://periodicos.newsciencepubl.com/arace/article/view/7929. Acesso em: 5 dec. 2025.