APÓSITOS A BASE DE POLIURETANO POLIMÉRICO PARA EL TRATAMIENTO DE ÚLCERAS NEUROPÁTICAS: UNA REVISIÓN BIBLIOGRÁFICA
DOI:
https://doi.org/10.56238/arev7n9-067Palabras clave:
Úlceras, Diabetes, Apósitos, Polímeros, HeridasResumen
Las úlceras cutáneas son lesiones cutáneas que, según su extensión y grado de infección, pueden causar complicaciones graves en los tejidos epiteliales. Las personas con diabetes son más propensas a desarrollar úlceras neuropáticas en las extremidades inferiores, conocidas como úlceras del pie diabético. Estas heridas crónicas representan un gran desafío para la medicina y son la segunda causa principal de amputaciones de pie en Brasil. Dada esta prerrogativa, se hace evidente la necesidad de desarrollar apósitos eficaces para el tratamiento y control de esta enfermedad. El desarrollo de sistemas de apósitos basados en polímeros sintéticos, como el poliuretano (PU), ha demostrado ser una alternativa prometedora para tratar y ralentizar la progresión de algunas enfermedades, incluidas las úlceras del pie diabético. Este trabajo consiste en una revisión bibliográfica reciente que incluye estudios que proponen nuevos enfoques terapéuticos utilizando poliuretano como material polimérico combinado con bioactivos para el tratamiento de úlceras neuropáticas. La literatura revisada destaca el gran potencial del PU en este tipo de aplicación, demostrando su contribución para acelerar el proceso de cicatrización de estas heridas, lo que puede mejorar significativamente la calidad de vida de los pacientes con esta afección.
Descargas
Referencias
ABRISHAM, M.; NOROOZI, M.; PANAHI-SARMAD, M.; ARJMAND, M.; GOODARZI, V.; SHAKERI, Y.; GOLBATEN-MOFRAD, H. DEHGHAN, P.; SAHZABI, A.; SADRI, M. The role of polycaprolactone-triol (PCL-T) in biomedical applications: a state-of-the-art review. European Polymer Journal, [S.L.], v. 131, p. 109701, maio 2020. Elsevier BV. http://dx.doi.org/10.1016/j.eurpolymj.2020.109701. DOI: https://doi.org/10.1016/j.eurpolymj.2020.109701
AHMED, A.; ANTONSEN, E. Immune and vascular dysfunction in diabetic wound healing. Journal of Wound Care, 2016, 2016, 25, S35– S46 DOI: https://doi.org/10.12968/jowc.2016.25.Sup7.S35
ALMASIAN A, NAJAFI F, EFTEKHARI M, SHAMS ARDEKANI MR, SHARIFZADEH M, KHANAVI M. Preparation of Polyurethane/Pluronic F127 Nanofibers Containing Peppermint Extract Loaded Gelatin Nanoparticles for Diabetic Wounds Healing: Characterization, In Vitro, and In Vivo Studies. Evidence-Based Complementary and Alternative Medicine. 2021 15; 2021:6646702. doi: 10.1155/2021/6646702. DOI: https://doi.org/10.1155/2021/6646702
BAHIA L. O alto custo do pé diabético no Brasil. Sociedade Brasileira de Diabetes 2018. Disponível em https://www.diabetes.org.br/publico/ultimas/1609-o-alto-custo-do-pe-diabetico-no-brasil
BARRETT, E.J., LIU, Z.; KHAMAISI, M.;KING, G.L.; KLEIN R.; KLEIN, B.E.K.; HUGHES, T.M.; CRAFT, S.; FREEDMAN, B.I.; BOWDEN, D.W.; VINIK, A.I.; CASELLINI; C.M. Diabetic Microvascular Disease: An Endocrine Society Scientific Statement The Journal of Clinical Endocrinology & Metabolism, Volume 102, Issue 12, 1 December 2017, Pages 4343–4410, https://doi.org/10.1210/jc.2017-01922. DOI: https://doi.org/10.1210/jc.2017-01922
BARU, S.-I.; MATTHEWS, S.; MARCHESE, E.; WALSH, P.; COFFEY, A. The Effect of Sub- and Near-Critical Carbon Dioxide Assisted Manufacturing on Medical Thermoplastic Polyurethane. Polymers 2023, 15, 822. https://doi.org/10.3390/polym15040822 DOI: https://doi.org/10.3390/polym15040822
BOATENG, J.; CATANZANO, O. Advanced Therapeutic Dressings for Effective Wound Healing. A Review. Journal of Pharmaceutical Sciences, 104(11): 3653-3680, 2015 DOI: https://doi.org/10.1002/jps.24610
BUJOK, S.; PETER, J.; HALECKÝ, M.; ECORCHARD, P; MACHÁLKOVÁ, A.; MEDEIROS, G; HODAN, J.; PAVLOVA, E.; BENEŁ, H. Sustainable microwave synthesis of biodegradable active packaging films based on polycaprolactone and layered ZnO nanoparticles. Polymer Degradation and Stability, [S.L.], v. 190, p. 109625, ago. 2021. Elsevier BV. http://dx.doi.org/10.1016/j.polymdegradstab. 2021.109625. DOI: https://doi.org/10.1016/j.polymdegradstab.2021.109625
CARAYON, I.; SZARLE, J. P.; GNATOWSKI, P.; PIŁAT, E.; SIENKIEWICZ, M.; GLINKA, M.; KARCZEWSKI, J.; KUCIŃSKA-LIPKA, J. Polyurethane based hybrid
ciprofloxacin-releasing wound dressings designed for skin engineering purposes. Adv Med Sci. 2022 Sep;67(2): 269-282.doi: 10.1016/j.advms.2022.05.003. DOI: https://doi.org/10.1016/j.advms.2022.05.003
Epub 2022 Jul 13. PMID: 35841880.
CHOGAN, F.; MIRMAJIDI, T.; REZAYAN, A. H.; SHARIFI, A.M.; GHAHARY, A.
NOURMOHAMMADI, J.; KAMALI, A.; RAHAIE, M. Design, fabrication, and optimization of a dual function three-layer scaffold for controlled release of metformin hydrochloride to alleviate fibrosis and accelerate wound healing. Acta Biomaterialia, [S.L.], v. 113, p. 144-163, set. 2020.Elsevier BV. http://dx.doi.org/10.1016/j.actbio.2020.06.031. DOI: https://doi.org/10.1016/j.actbio.2020.06.031
DHIVYA, S.; PADMA, V. V.; SANTHINI, E. Wound dressings– a review. Biomedicine, [S.L.], v. 5, n. 4, p. 24-28, 28 nov. 2015. China Medical University. http://dx.doi.org/10.7603/s40681-015-0022-9. Acesso em 10/06/2023. DOI: https://doi.org/10.7603/s40681-015-0022-9
GONÇALVES, R. V.; COSTA, A.; GRZESKOWIAK, L. Oxidative Stress and Tissue Repair: Mechanism, Biomarkers, and Therapeutics. Oxidative Medicine and Cellular Longevity, v. 2021, 2021. DOI: https://doi.org/10.1155/2021/6204096
HARDT, J. C.; PELLÁ, M. C. G.; MEIRA, A. C. R.; ROSENBERGER, A. G.; CAETANO, J.; DRAGUNSKI, D. C. Potential wound dressings from electrospun medicated poly(butylene-adipate-co-terephthalate)/poly-(ε-caprolactone) microfibers. Journal Of Molecular Liquids, [S.L.], v. 339, p. 116694, out. 2021. Elsevier BV.http://dx.doi.org/10.1016/j.molliq.2021.116694. DOI: https://doi.org/10.1016/j.molliq.2021.116694
HEATH, D.E.; COOPER, S.L. Polymers: basic principles. IN: Ratner, B.D.; Hoffman, A.S.; Schoen, F.J.; Lemons, J.E. (Eds.). Biomaterials Science: An Introduction to Materials in Medicine. 3ª edição. Oxford, Elsevier, 2013, capítulo I.2.2, 64-78
LUNEVA O, OLEKHNOVICH R, USPENSKAYA M. BILAYEr Hydrogels for Wound Dressing and Tissue Engineering. Polymers (Basel). 2022 Aug 1;14(15):3135. doi: 10.3390/polym14153135. PMID: 35956650; PMCID: PMC9371176. DOI: https://doi.org/10.3390/polym14153135
IDF- International Diabetes Federation. Diabetic Atlas, 9th edn. Brussels, Belgium, 2019. Acesso em 04/05/2023 http://www.diabetesatlas.org.
JEFFCOATE, WJ; VILEIKYTE, L.; BOYKO E.J.; ARMSTRONG, D.G.; BOULTON, A.J.M. Current challenges and opportunities in the prevention and management of diabetic foot ulcers. Diabetes Care 2018; 41(4): 645-652 DOI: https://doi.org/10.2337/dc17-1836
KUMAR, A.; WANG, X.; NUNE, K.C.; MISRA, R. Biodegradable hydrogel-based biomaterials with high absorbent properties for non-adherent wound dressing. International Wound Journal. 2017, 14, 1076–1087. DOI: https://doi.org/10.1111/iwj.12762
KUCINSKA‑LIPKA, J.; GUBANSKA, I.; LEWANDOWSKA, A.; TEREBIENIEC, A.; PRZYBYTEK, A.; CIEŚLIŃSKI, H. Antibacterial polyurethanes, modified with cinnamaldehyde, as potential materials for fabrication of wound dressings https://doi.org/10.1007/s00289-018-2512-x Polymer Bulletin (2019) 76:2725–2742 DOI: https://doi.org/10.1007/s00289-018-2512-x
LAZZARINI, P.A.; CREWS, R.T.; VAN NETTEN JJ, BUS SA, FERNANDO ME, CHADWICK PJ, NAJAFI B. Measuring Plantar Tissue Stress in People With Diabetic Peripheral Neuropathy: A Critical Concept in Diabetic Foot Management. Journal Diabetes Sci Technol. 2019 Sep;13(5):869-880. doi: 10.1177/1932296819849092. Epub 2019 Apr 29. PMID: 31030546; PMCID: PMC6955461. DOI: https://doi.org/10.1177/1932296819849092
LIU, H.; LI, Z.; Y; ZHAO, Y.; FENG, Y.; ZVYAGIN, A.V.; WANG, J.; YANG, X; YANG, B.; LIN, Q. Novel Diabetic Foot Wound Dressing Based on Multifunctional Hydrogels with Extensive Temperature-Tolerant, Durable, Adhesive, and Intrinsic Antibacterial Properties doi: 10.1021/acsami.1c05514. PubMed, 2021. DOI: https://doi.org/10.1021/acsami.1c05514
LI, W.; WU, D.; ZHU, S.; LIU, Z.; LUO, B.; LU, L.; ZHOU, C. Sustained release of plasmid DNA from PLA/POSS nanofibers for angiogenic therapy. Chemical Engineering Journal, [S.L.], v. 365, p. 270-281, jun. 2019. Elsevier BV. http://dx.doi.org/10.1016/j.cej.2019.02.043. DOI: https://doi.org/10.1016/j.cej.2019.02.043
LUO, M.; SHAITAN, K.; QU, X.; BONARTSEV, A.P.; LEI, B. Bioactive rare earth-based inorganic-organic hybrid biomaterials for wound healing and repair. Applied Materials Today, [S.L.], v. 26, p. 101304-16, mar. 2022. Elsevier BV. http://dx.doi.org/10.1016/j.apmt.2021.101304. DOI: https://doi.org/10.1016/j.apmt.2021.101304
MOGOŠANU, G.D.; GRUMEZESCU, A.M. Natural and synthetic polymers for wounds and burns dressing, International Journal of Pharmaceutics, 463: 127–136, 2014. DOI: https://doi.org/10.1016/j.ijpharm.2013.12.015
MOURA, M.R.T; DOWSETT, C; BAIN, K. BAIN M (2020) Advancing practice in holistic wound management: a consensus-based call to action. Wounds International 11(4): 70–5 Murphy C, Atkin L, Swanson T et al (2020) International consensus document. Defying hard-to-heal wounds with an early antibiofilm intervention strategy: wound hygiene. 29(Suppl 3b): S1–28 Journal Wound Care
MOURA, L.I.F.; DIAS, A.M.A.; CARVALHO, E.; SOUSA, H.C. Recent advances on the development of wound dressings for diabetic foot ulcer treatment. A review. Acta Biomater 9: 7093–7114, 2013 DOI: https://doi.org/10.1016/j.actbio.2013.03.033
NIU, W.; CHEN, M.; GUO, Y.; WANG, M.; LUO, M.; CHENG, W.; WANG, Y.; LEI, B. A Multifunctional Bioactive Glass-Ceramic Nanodrug for Post-Surgical Infection/Cancer Therapy-Tissue Regeneration. Acs Nano, [S.L.], v. 15, n. 9, p. 14323-14337, 7 set. 2021. American Chemical Society (ACS). http://dx.doi.org/10.1021/acsnano.1c03214. DOI: https://doi.org/10.1021/acsnano.1c03214
PIAGGESI, A; GORETTI, C.; IACOPI, E.; CLERICI, G.; ROMAGNOLI, F.; TOSCANELLA, F.; VERMIGLI, C. Comparison of Removable and Irremovable Walking Boot to Total Contact Casting in Offloading the Neuropathic Diabetic Foot Ulceration. Foot Ankle Int. 2016 Aug;37(8):855-61. doi: 10.1177/1071100716643429. Epub 2016 Apr 15. PMID: 27083507. DOI: https://doi.org/10.1177/1071100716643429
PRIYADARSINI, S.L.; SURESH, M.; NIKHILA, G. Assessment framework for the selection of a potential interactive dressing material for diabetic foot ulcer. Heliyon. 2023 May 22;9(6) e16476. doi: 10.1016/j.heliyon. 2023.e16476. PMID: 37292346; PMCID: PMC10245162.
PYUN, D.G.; CHOI, H.J; YOON, H.S.; THAMBI, T.; LEE, D.S. Polyurethane foam containing rhEGF as a dressing material for healing diabetic wounds: Synthesis, characterization, in vitro and in vivo studies. Colloids Surf B Biointerfaces. 2015 Nov 1; 135:699-706. doi: 10.1016/j.colsurfb.2015.08.029. Epub 2015 Aug 24. DOI: https://doi.org/10.1016/j.colsurfb.2015.08.029
OJEDA-MARTÍNEZ, M. L; YÁÑEZ-SÁNCHEZ, I.; VELÁSQUEZ-ORDOÑEZ, C.; MARTÍNEZ-PALOMAR, M. M; ÁLVAREZ-RODRÍGUEZ, A.; A GARCIA-SÁNCHEZ, M.; ROJAS-GONZÁLEZ, F.; GÁLVEZ-GASTÉLUM, F. J. Skin wound healing with chitosan thin films containing supported silver nanospheres. Journal Of Bioactive and Compatible Polymers, [S.L.], v. 30, n. 6, p. 617-632, 16 jun. 2015. SAGE Publications. http://dx.doi.org/10.1177/0883911515590495. DOI: https://doi.org/10.1177/0883911515590495
ROCHA, A. M.; QUINTELLA, C. M.; TORRES, E. A. Prospecção de artigos e patentes sobre polímeros biocompatíveis aplicados à Engenharia de Tecidos e Medicina Regenerativa. Cadernos de Prospecção, v. 5, n. 2, p. 72, 2014. DOI: https://doi.org/10.9771/S.CPROSP.2012.005.008
ROGNONI, E.; WATT, F. M. Skin Cell Heterogeneity in Development,
Wound Healing, and Cancer. Trends In Cell Biology, [S.L.], v. 28, n. 9, p. 709-722, set. 2018. Elsevier BV. http://dx.doi.org/10.1016/j.tcb.2018.05.002. DOI: https://doi.org/10.1016/j.tcb.2018.05.002
SAFARI, B; AGHAZADEH, M.; D., S.; ROSHANGAR, L. Exosome-loaded hydrogels: a new cell-free therapeutic approach for skin regeneration. European Journal of Pharmaceutics and Biopharmaceutics, [S.L.], v. 171, p. 50-59, fev. 2022. Elsevier BV. http://dx.doi.org/10.1016/j.ejpb.2021.11.002. DOI: https://doi.org/10.1016/j.ejpb.2021.11.002
SEGGIANI, M.; ALTIERI, R.; PUCCINI, M.; STEFANELLI, E.; ESPOSITO, A.; CASTELLANI, F.; STANZIONE, V.; VITOLO, S. Polycaprolactone-collagen hydrolysate thermoplastic blends: processability and biodegradability/ compostability. Polymer Degradation and Stability, [S.L.], v.150, p. 13-24, abr. 2018. Elsevier BV. DOI: https://doi.org/10.1016/j.polymdegradstab.2018.02.001
http://dx.doi.org/10.1016/j.polymdegradstab.2018.02.001 DOI: https://doi.org/10.1016/j.polymdegradstab.2018.02.001
SBD -Sociedade Brasileira de Diabetes - Diretriz da Sociedade Brasileira de Diabetes Diretriz da Sociedade Brasileira de Diabetes. Atualização Brasileira sobre Diabetes. EDIÇÃO 2023 https://diretriz.diabetes.org.br/
SBD Sociedade Brasileira de Diabetes -Diretriz SBD,
Diretriz da Sociedade Brasileira de Diabetes EDIÇÃO 2022 https://diretriz.diabetes.org.br/
SHAW, P., SHARMA A. K., KALONIA A., SHUKLA,S. K. Vascular perfusion: A predictive tool for thermal burn injury-Journal of Tissue Viability, 2020, 29, 48–50 https://doi.org/10.1016/j.jtv..12.002. DOI: https://doi.org/10.1016/j.jtv.2019.12.002
SHEN, X.; SHAMSHINA, J.L.; BERTON, P.; GURAU, G.; ROGERS, R.D. Hydrogels based on cellulose and chitin: fabrication, properties, and applications. Green Chemical. 18: 53–75, 2016. DOI: https://doi.org/10.1039/C5GC02396C
THOMAS, M. S.; PILLAI, P.K. S.; FARIA, M.; CORDEIRO, N.; BARUD, H.; THOMAS, S.; POTHEN, L. A. Electrospun polylactic acidchitosan composite: a bio-based alternative for inorganic composites for advanced application. Journal Of Materials Science: Materials in Medicine, [S.L.], v. 29, n. 9, p. 1-12, 17 ago. 2018. Springer Science and Business Media LLC. http://dx.doi.org/10.1007/s10856-018-6146-1. DOI: https://doi.org/10.1007/s10856-018-6146-1
TSIAPLA, A.R.; KARAGKIOZAKI, V.; PAPPA, F.; BAKOLA, V.; CHOLIPAPADOPOULOU, TH.; MOUTSIOS, I.; PAVLIDOU, E.; LASKARAKIS, A.; LOGOTHETIDIS, S. Drug delivery nanoplatform for orthopaedic-associated infections. Materials Today: Proceedings, [S.L.], v. 4, n. 7, p. 6880-6888, 2017. Elsevier BV. http://dx.doi.org/10.1016/j.matpr.2017.07.017. DOI: https://doi.org/10.1016/j.matpr.2017.07.017
TU, Z.; CHEN, M.; WANG, M.; SHAO, Z.; JIANG, X.; WANG, K.; YAO, Z.; YANG, S.; ZHANG, X.; GAO, W. Engineering Bioactive M2 Macrophage‐Polarized Anti‐Inflammatory, Antioxidant, and Antibacterial Scaffolds for Rapid Angiogenesis and Diabetic Wound Repair. Advanced Functional Materials, [S.L.], v. 31, n. 30, p. 2100924, 26 maio 2021. Wiley.http://dx.doi.org/10.1002/Adfm.202100924 DOI: https://doi.org/10.1002/adfm.202100924
VAHEDI, P.; JAROLMASJED, S.; SHAFAEI, H.; ROSHANGAR, L.; RAD, J. S.; AHMADIAN, E. In vivo articular cartilagem regeneration through infrapatellar adipose tissue derived stem cell in nanofiber polycaprolactone scaffold. Tissue And Cell, [S.L.], v. 57, p. 49-56, abr. 2019. Elsevier BV. http://dx.doi.org/10.1016/j.tice.2019.02.002. DOI: https://doi.org/10.1016/j.tice.2019.02.002
44.WANG, C.; MENG, C.; ZHANG, Z.; ZHU, Q. 3D printing of polycaprolactone/bioactive glass composite scaffolds for in situ bone repair. Ceramics International, [S.L.], v. 48, n. 6, p. 7491-7499, mar. 2022. Elsevier BV. http://dx.doi.org/10.1016/j.ceramint.2021.11.293. Acesso em 29/05/2023. DOI: https://doi.org/10.1016/j.ceramint.2021.11.293
WANG, H., XU, Z., ZHAO, M., LIU, G., & WU, J. (2021). Advances of hydrogel dressings in diabetic wounds. Biomaterials Science, 9(5), 1530–1546. https://doi.org/10.1039/d0bm01747g. DOI: https://doi.org/10.1039/D0BM01747G
WANG, Y.; BEEKMAN, J.; HEW, J.; JACKSON, S.; ISSLERFISHER, A. C.; PARUNGAO, R.; LAJEVARDI, S.S.; LI, Z. MAITZ, P. K.M. B: challenges and advances in burn wound healing, infection, pain and scarring. Advanced Drug Delivery Reviews, [S.L.], v. 123, p. 3-17, jan. 2018. Elsevier BV. http://dx.doi.org/10.1016/j.addr.2017.09.018. DOI: https://doi.org/10.1016/j.addr.2017.09.018
WAGNER, W.F.: The dysvascular foot: a system for diagnosis and treatment. Foot Ankle 2: 64-122, 1981 DOI: https://doi.org/10.1177/107110078100200202
ZHANG, J.; MARTIN, D.J.; TARAN, E.; THURECHT, K.J.; MINCHIN, R.F. Effect of supercritical carbon dioxide on the loading and release of model drugs from polyurethane films: comparison with solvent casting, Macromol. Chemistry and Physics. 215: 54–64, 2014. DOI: https://doi.org/10.1002/macp.201300492
ZHANG, K; LI, G-H; SHI, Yu-Dong; CHEN, Yi-Fu; ZENG, J-B; WANG, M. Crystallization kinetics and morphology of biodegradable Poly(ε-caprolactone) with chain-like distribution of ferroferric oxide nanoparticles: toward mechanical enhancements. Polymer, [S.L.], v. 117, p. 84-95, maio 2017. Elsevier BV. http://dx.doi.org/10.1016/j.polymer.2017.04.023. DOI: https://doi.org/10.1016/j.polymer.2017.04.023
