METAGENOMIC ANALYSIS OF BACTERIA PRODUCING THE ENZYME ADENYLATE CYCLASE (EC 4.6.1.1) UNDER DIFFERENT SOIL AND FOREST MANAGEMENTS
DOI:
https://doi.org/10.56238/arev7n8-204Keywords:
Environmental Genomics, Microbial Ecology, Liases, MicrobiologyAbstract
The soil microbial community plays an essential role in ecological processes, such as nutrient cycling and plant health, and is regulated by molecular mechanisms such as signaling via adenylate cyclase (E.C. 4.6.1.1). This enzyme is a key component of the cAMP pathway, with functional relevance in various microbial contexts. The aim of this study was to quantify and taxonomically identify adenylate cyclase-producing bacteria in soils under different agricultural management and in native forest areas in the region of Dourados - MS, Brazil. To this end, five soil samples were analyzed using metagenomic sequencing and bioinformatics tools, including contig assembly, ORF prediction, local database alignment, taxonomic and statistical analyses. 18,139 sequences associated with the target enzyme were identified, with greater abundance in soils of continuous pasture and crop-livestock integration. The phyla Actinobacteria and Proteobacteria were predominant, and the genera Sinorhizobium, Micromonospora and Bifidobacterium stood out, with significant variations between managements. The analysis showed that management practices directly affect the composition and diversity of bacteria producing the enzyme adenylate cyclase.
Downloads
References
Banerjee, S., & van der Heijden, M. G. A. (2023). Soil microbiomes and one health. Nature Reviews Microbiology, 21(1), 6–20. https://doi.org/10.1038/s41579-022-00779-w DOI: https://doi.org/10.1038/s41579-022-00779-w
Boratin, G. M., Camacho, C., Cooper, P. S., Coulouris, G., Fong, A., Ma, N., Madden, T. L., Matten, W. T., McGinnis, S. D., Merezhuk, Y., Raytselis, Y., Sayers, E. W., Tao, T., Ye, J., & Zaretskaya, I. (2013). BLAST: A more efficient report with usability improvements. Nucleic Acids Research, 41(W1), W29–W33. https://doi.org/10.1093/nar/gkt282 DOI: https://doi.org/10.1093/nar/gkt282
Duangurai, T., Indrawattana, N., & Pumirat, P. (2018). Burkholderia pseudomallei adaptation for survival in stressful conditions. BioMed Research International, 2018, Article 9123926. https://doi.org/10.1155/2018/9123926 DOI: https://doi.org/10.1155/2018/3039106
Gorgojo, J. P., Fernández, J., Estein, S. M., & Baldi, P. C. (2023). Adenylate cyclase toxin of Bordetella parapertussis disrupts the epithelial barrier granting the bacterial access to the intracellular space of epithelial cells. PLOS ONE, 18(11), e0291331. https://doi.org/10.1371/journal.pone.0291331 DOI: https://doi.org/10.1371/journal.pone.0291331
Heberle, H., Meirelles, G. V., da Silva, F. R., Telles, G. P., & Minghim, R. (2015). InteractiVenn: A web-based tool for the analysis of sets through Venn diagrams. BMC Bioinformatics, 16, 169. https://doi.org/10.1186/s12859-015-0611-3 DOI: https://doi.org/10.1186/s12859-015-0611-3
Huson, D. H., Auch, A. F., Qi, J., & Schuster, S. C. (2018). MEGAN-LR: New algorithms allow accurate binning and easy interactive exploration of metagenomic long reads and contigs. Biology Direct, 13, 6. https://doi.org/10.1186/s13062-018-0208-7 DOI: https://doi.org/10.1186/s13062-018-0208-7
Kačergius, A., Kačergius, T., Stankevičius, R., & Kačergius, A. (2023). Comparison of the structure of soil microbial communities of different ecosystems using the microbiome sequencing approach. Soil Systems, 7(3), 70. https://doi.org/10.3390/soilsystems7030070 DOI: https://doi.org/10.3390/soilsystems7030070
Kapetanaki, S. M., Burton, M. J., Steinhardt, R. C., & Korkhov, V. M. (2024). Crystal structure of a bacterial photoactivated adenylate cyclase determined by serial femtosecond and serial synchrotron crystallography. IUCrJ, 11(Pt 6), 991–1006. https://doi.org/10.1107/S2052252524010170 DOI: https://doi.org/10.1107/S2052252524010170
Khannpnavar, B., Mehta, V., Qi, C., & Korkhov, V. (2020). Structure and function of adenylyl cyclases, key enzymes in cellular signaling. Current Opinion in Structural Biology, 63, 34–41. https://doi.org/10.1016/j.sbi.2020.03.005 DOI: https://doi.org/10.1016/j.sbi.2020.03.003
Lindner, F., & Diepold, A. (2022). Optogenetics in bacteria—applications and opportunities. FEMS Microbiology Reviews, 46(2), fuab055. https://doi.org/10.1093/femsre/fuab055 DOI: https://doi.org/10.1093/femsre/fuab055
Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P., & Tyson, G. W. (2014). STAMP: Statistical analysis of taxonomic and functional profiles. Bioinformatics, 30(21), 3123–3124. https://doi.org/10.1093/bioinformatics/btu494 DOI: https://doi.org/10.1093/bioinformatics/btu494
Peng, Y., Leung, H. C. M., Yiu, S. M., & Chin, F. Y. L. (2012). IDBA-UD: A de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth. Bioinformatics, 28(11), 1420–1428. https://doi.org/10.1093/bioinformatics/bts174 DOI: https://doi.org/10.1093/bioinformatics/bts174
Rho, M., Tang, H., & Ye, Y. (2010). FragGeneScan: Predicting genes in short and error-prone reads. Nucleic Acids Research, 38(20), e191. https://doi.org/10.1093/nar/gkq747 DOI: https://doi.org/10.1093/nar/gkq747
Schmieder, R., & Edwards, R. (2011). Quality control and preprocessing of metagenomic datasets. Bioinformatics, 27(6), 863–864. https://doi.org/10.1093/bioinformatics/btr026 DOI: https://doi.org/10.1093/bioinformatics/btr026
Shahrajabian, M. H., Sun, W., & Cheng, Q. (2021). The importance of Rhizobium, Agrobacterium, Bradyrhizobium, Herbaspirillum, Sinorhizobium in sustainable agricultural production. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 49(3), 12183. https://doi.org/10.15835/nbha49312183 DOI: https://doi.org/10.15835/nbha49312183
Souza, R. C., Hungria, M., Cantão, M. E., Vasconcelos, A. T. R., Nogueira, M. A., & Vicente, V. A. (2015). Metagenomic analysis reveals microbial functional redundancies and specificities in a soil under different tillage and crop-management regimes. Applied Soil Ecology, 86, 106–112. https://doi.org/10.1016/j.apsoil.2014.10.010 DOI: https://doi.org/10.1016/j.apsoil.2014.10.010
Spellerberg, I. F., & Fedor, P. J. (2003). A tribute to Claude Shannon (1916–2001) and a plea for more rigorous use of species richness, species diversity and the ‘Shannon–Wiener’ index. Global Ecology and Biogeography, 12(3), 177–179. https://doi.org/10.1046/j.1466-822X.2003.00015.x DOI: https://doi.org/10.1046/j.1466-822X.2003.00015.x
Taş, N., de Jong, A. E., Li, Y., Trubl, G., Xue, Y., & Dove, N. C. (2021). Metagenomic tools in microbial ecology research. Current Opinion in Biotechnology, 67, 184–191. https://doi.org/10.1016/j.copbio.2021.01.006 DOI: https://doi.org/10.1016/j.copbio.2021.01.019
Tian, C. F., Zhou, Y. J., Zhang, Y. M., Li, Q. Q., Zhang, Y. Z., Li, D. F., Wang, S., Wang, E. T., Du, B. H., & Sui, X. H. (2012). Plant-activated bacterial receptor adenylate cyclases modulate epidermal infection in the Sinorhizobium meliloti–Medicago symbiosis. Proceedings of the National Academy of Sciences, 109(17), 6751–6756. https://doi.org/10.1073/pnas.1120260109 DOI: https://doi.org/10.1073/pnas.1120260109
Yang, K., Liang, L., Ran, F., Liu, Y., Li, Z., Lan, H., Gao, P., Zhuang, W., & Zhang, D. (2016). Adenylate cyclase AcyA regulates development, aflatoxin biosynthesis and fungal virulence in Aspergillus flavus. Frontiers in Cellular and Infection Microbiology, 6, 190. https://doi.org/10.3389/fcimb.2016.00190 DOI: https://doi.org/10.3389/fcimb.2016.00190
Yawo, H., Kandori, H., Koizumi, A., & Kageyama, R. (Eds.). (2021). Optogenetics: Light-sensing proteins and their applications in neuroscience and beyond. Springer. https://doi.org/10.1007/978-981-15-8763-4 DOI: https://doi.org/10.1007/978-981-15-8763-4
