ANÁLISE METAGENOMICA DE BACTÉRIAS PRODUTORAS DA ENZIMA ADENILATO CICLASE (EC 4.6.1.1) SOB DIFERENTES MANEJOS DE SOLO E FLORESTA
DOI:
https://doi.org/10.56238/arev7n8-204Palavras-chave:
Genômica Ambiental, Ecologia Microbiana, Liases, MicrobiologiaResumo
A comunidade microbiana do solo desempenha um papel essencial em processos ecológicos, como ciclagem de nutrientes e saúde vegetal, e é regulada por mecanismos moleculares como a sinalização via adenilato ciclase (E.C. 4.6.1.1). Esta enzima é um componente chave da via do AMPc, com relevância funcional em vários contextos microbianos. O objetivo deste estudo foi quantificar e identificar taxonomicamente bactérias produtoras de adenilato ciclase em solos sob diferentes manejos agrícolas e em áreas de floresta nativa na região de Dourados - MS, Brasil. Para tanto, cinco amostras de solo foram analisadas utilizando ferramentas de sequenciamento metagenômico e bioinformática, incluindo montagem de contigs, predição de ORFs, alinhamento de banco de dados local, análises taxonômicas e estatísticas. Foram identificadas 18.139 sequências associadas à enzima alvo, com maior abundância em solos de pastagem contínua e integração lavoura-pecuária. Os filos Actinobacteria e Proteobacteria predominaram, com destaque para os gêneros Sinorhizobium, Micromonospora e Bifidobacterium, com variações significativas entre os manejos. A análise mostrou que as práticas de manejo afetam diretamente a composição e a diversidade de bactérias produtoras da enzima adenilato ciclase.
Downloads
Referências
Banerjee, S., & van der Heijden, M. G. A. (2023). Soil microbiomes and one health. Nature Reviews Microbiology, 21(1), 6–20. https://doi.org/10.1038/s41579-022-00779-w DOI: https://doi.org/10.1038/s41579-022-00779-w
Boratin, G. M., Camacho, C., Cooper, P. S., Coulouris, G., Fong, A., Ma, N., Madden, T. L., Matten, W. T., McGinnis, S. D., Merezhuk, Y., Raytselis, Y., Sayers, E. W., Tao, T., Ye, J., & Zaretskaya, I. (2013). BLAST: A more efficient report with usability improvements. Nucleic Acids Research, 41(W1), W29–W33. https://doi.org/10.1093/nar/gkt282 DOI: https://doi.org/10.1093/nar/gkt282
Duangurai, T., Indrawattana, N., & Pumirat, P. (2018). Burkholderia pseudomallei adaptation for survival in stressful conditions. BioMed Research International, 2018, Article 9123926. https://doi.org/10.1155/2018/9123926 DOI: https://doi.org/10.1155/2018/3039106
Gorgojo, J. P., Fernández, J., Estein, S. M., & Baldi, P. C. (2023). Adenylate cyclase toxin of Bordetella parapertussis disrupts the epithelial barrier granting the bacterial access to the intracellular space of epithelial cells. PLOS ONE, 18(11), e0291331. https://doi.org/10.1371/journal.pone.0291331 DOI: https://doi.org/10.1371/journal.pone.0291331
Heberle, H., Meirelles, G. V., da Silva, F. R., Telles, G. P., & Minghim, R. (2015). InteractiVenn: A web-based tool for the analysis of sets through Venn diagrams. BMC Bioinformatics, 16, 169. https://doi.org/10.1186/s12859-015-0611-3 DOI: https://doi.org/10.1186/s12859-015-0611-3
Huson, D. H., Auch, A. F., Qi, J., & Schuster, S. C. (2018). MEGAN-LR: New algorithms allow accurate binning and easy interactive exploration of metagenomic long reads and contigs. Biology Direct, 13, 6. https://doi.org/10.1186/s13062-018-0208-7 DOI: https://doi.org/10.1186/s13062-018-0208-7
Kačergius, A., Kačergius, T., Stankevičius, R., & Kačergius, A. (2023). Comparison of the structure of soil microbial communities of different ecosystems using the microbiome sequencing approach. Soil Systems, 7(3), 70. https://doi.org/10.3390/soilsystems7030070 DOI: https://doi.org/10.3390/soilsystems7030070
Kapetanaki, S. M., Burton, M. J., Steinhardt, R. C., & Korkhov, V. M. (2024). Crystal structure of a bacterial photoactivated adenylate cyclase determined by serial femtosecond and serial synchrotron crystallography. IUCrJ, 11(Pt 6), 991–1006. https://doi.org/10.1107/S2052252524010170 DOI: https://doi.org/10.1107/S2052252524010170
Khannpnavar, B., Mehta, V., Qi, C., & Korkhov, V. (2020). Structure and function of adenylyl cyclases, key enzymes in cellular signaling. Current Opinion in Structural Biology, 63, 34–41. https://doi.org/10.1016/j.sbi.2020.03.005 DOI: https://doi.org/10.1016/j.sbi.2020.03.003
Lindner, F., & Diepold, A. (2022). Optogenetics in bacteria—applications and opportunities. FEMS Microbiology Reviews, 46(2), fuab055. https://doi.org/10.1093/femsre/fuab055 DOI: https://doi.org/10.1093/femsre/fuab055
Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P., & Tyson, G. W. (2014). STAMP: Statistical analysis of taxonomic and functional profiles. Bioinformatics, 30(21), 3123–3124. https://doi.org/10.1093/bioinformatics/btu494 DOI: https://doi.org/10.1093/bioinformatics/btu494
Peng, Y., Leung, H. C. M., Yiu, S. M., & Chin, F. Y. L. (2012). IDBA-UD: A de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth. Bioinformatics, 28(11), 1420–1428. https://doi.org/10.1093/bioinformatics/bts174 DOI: https://doi.org/10.1093/bioinformatics/bts174
Rho, M., Tang, H., & Ye, Y. (2010). FragGeneScan: Predicting genes in short and error-prone reads. Nucleic Acids Research, 38(20), e191. https://doi.org/10.1093/nar/gkq747 DOI: https://doi.org/10.1093/nar/gkq747
Schmieder, R., & Edwards, R. (2011). Quality control and preprocessing of metagenomic datasets. Bioinformatics, 27(6), 863–864. https://doi.org/10.1093/bioinformatics/btr026 DOI: https://doi.org/10.1093/bioinformatics/btr026
Shahrajabian, M. H., Sun, W., & Cheng, Q. (2021). The importance of Rhizobium, Agrobacterium, Bradyrhizobium, Herbaspirillum, Sinorhizobium in sustainable agricultural production. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 49(3), 12183. https://doi.org/10.15835/nbha49312183 DOI: https://doi.org/10.15835/nbha49312183
Souza, R. C., Hungria, M., Cantão, M. E., Vasconcelos, A. T. R., Nogueira, M. A., & Vicente, V. A. (2015). Metagenomic analysis reveals microbial functional redundancies and specificities in a soil under different tillage and crop-management regimes. Applied Soil Ecology, 86, 106–112. https://doi.org/10.1016/j.apsoil.2014.10.010 DOI: https://doi.org/10.1016/j.apsoil.2014.10.010
Spellerberg, I. F., & Fedor, P. J. (2003). A tribute to Claude Shannon (1916–2001) and a plea for more rigorous use of species richness, species diversity and the ‘Shannon–Wiener’ index. Global Ecology and Biogeography, 12(3), 177–179. https://doi.org/10.1046/j.1466-822X.2003.00015.x DOI: https://doi.org/10.1046/j.1466-822X.2003.00015.x
Taş, N., de Jong, A. E., Li, Y., Trubl, G., Xue, Y., & Dove, N. C. (2021). Metagenomic tools in microbial ecology research. Current Opinion in Biotechnology, 67, 184–191. https://doi.org/10.1016/j.copbio.2021.01.006 DOI: https://doi.org/10.1016/j.copbio.2021.01.019
Tian, C. F., Zhou, Y. J., Zhang, Y. M., Li, Q. Q., Zhang, Y. Z., Li, D. F., Wang, S., Wang, E. T., Du, B. H., & Sui, X. H. (2012). Plant-activated bacterial receptor adenylate cyclases modulate epidermal infection in the Sinorhizobium meliloti–Medicago symbiosis. Proceedings of the National Academy of Sciences, 109(17), 6751–6756. https://doi.org/10.1073/pnas.1120260109 DOI: https://doi.org/10.1073/pnas.1120260109
Yang, K., Liang, L., Ran, F., Liu, Y., Li, Z., Lan, H., Gao, P., Zhuang, W., & Zhang, D. (2016). Adenylate cyclase AcyA regulates development, aflatoxin biosynthesis and fungal virulence in Aspergillus flavus. Frontiers in Cellular and Infection Microbiology, 6, 190. https://doi.org/10.3389/fcimb.2016.00190 DOI: https://doi.org/10.3389/fcimb.2016.00190
Yawo, H., Kandori, H., Koizumi, A., & Kageyama, R. (Eds.). (2021). Optogenetics: Light-sensing proteins and their applications in neuroscience and beyond. Springer. https://doi.org/10.1007/978-981-15-8763-4 DOI: https://doi.org/10.1007/978-981-15-8763-4