PHOTOELASTIC STRESS ANALYSIS OF DIFFERENT MOLAR UPRIGHTING SPRINGS

Authors

  • Carolina Leão Pinheiro Author
  • Henrique Barcelos Brandão Author
  • Ana Carolina Costa Stival Author
  • Alyssa Schiavon Gandini Author
  • Luana Paz Sampaio Author
  • Luiz Gonzaga Gandini Junior Author

DOI:

https://doi.org/10.56238/levv17n56-019

Keywords:

Orthodontic, Biomechanics, Forces, Tipping, Materials, Photoelasticity

Abstract

The aim of this study was to analyze and compare the stress distributions in three molar uprighting techniques: cantilever, uprighting spring and Sander’s Spring, using quantitative and qualitative photoelastic analysis. Seven photoelastic models were made, the second molar was tipped forward 30º and the mandibular right canine and the first and second premolars were the anchor teeth. In each of the photoelastic models, we tested uprighting mechanics randomly. A software Fringes® was used to quantify the model’s shear stress. In the quantitative analysis the nonparametric Kruskal-wallis test demonstrated that only one point of the 18 analyzed, presented statistically significant difference, on point 14 (P=.033).  The Post hoc Dunn’s test showed difference between cantilever group and the group Sander's Spring bended 135°. In the qualitative analysis, the highest concentration order of isochromatic fringes was on point 6 of the molar. There was no statistically significant difference in all molar points.  On anchor teeth the Sander’s Spring bended 135º presented higher values on the order of fringes. With the results obtained in this research, the clinical decision of which mechanism of verticalization to use will be a personal preference of the orthodontist.

Downloads

Download data is not yet available.

References

1 Abrão, A. F., Domingos, R. G., de Paiva, J. B., Laganá, D. C., & Abrão, J. (2018). Photoelastic analysis of stress distribution in mandibular second molar roots caused by several uprighting mechanics. American Journal of Orthodontics and Dentofacial Orthopedics, 153(3), 415–421. DOI: https://doi.org/10.1016/j.ajodo.2017.07.023

2 Burstone, C. J., & Koenig, H. A. (1988). Creative wire bending—The force system from step and V bends. American Journal of Orthodontics and Dentofacial Orthopedics, 93(1), 59–67. DOI: https://doi.org/10.1016/0889-5406(88)90194-1

3 Cidade, C. P., Pimentel, M. J., Amaral, R. C., Nóbilo, M. A., & Barbosa, J. R. (2014). Photoelastic analysis of all-on-four concept using different implants angulations for maxilla. Brazilian Oral Research, 28, 1–6. DOI: https://doi.org/10.1590/1807-3107BOR-2014.vol28.0051

4 de Castro, G. C., de Araújo, C. A., Mesquita, M. F., Consani, R. L., & Nóbilo, M. A. (2013). Stress distribution in Co-Cr implant frameworks after laser or TIG welding. Brazilian Dental Journal, 24(2), 147–151. DOI: https://doi.org/10.1590/0103-6440201302112

5 Figueirêdo, E. P., Sigua-Rodriguez, E. A., Pimentel, M. J., Oliveira Moreira, A. R., Nóbilo, M. A., & de Albergaria-Barbosa, J. R. (2014). Photoelastic analysis of fixed partial prosthesis crown height and implant length on distribution of stress in two dental implant systems. International Journal of Dentistry, 2014, Article 206723. DOI: https://doi.org/10.1155/2014/206723

6 Glickman, I., Roeber, F. W., Brion, M., & Pameijer, J. H. (1970). Photoelastic analysis of internal stresses in the periodontium created by occlusal forces. Journal of Periodontology, 41(1), 30–35. DOI: https://doi.org/10.1902/jop.1970.41.1.30

7 Goldberg, J., & Burstone, C. J. (1979). An evaluation of beta titanium alloys for use in orthodontic appliances. Journal of Dental Research, 58(2), 593–599. DOI: https://doi.org/10.1177/00220345790580020901

8 Kojima, Y., Mizuno, T., & Fukui, H. (2007). A numerical simulation of tooth movement produced by molar uprighting spring. American Journal of Orthodontics and Dentofacial Orthopedics, 132(5), 630–638. DOI: https://doi.org/10.1016/j.ajodo.2005.07.035

9 Maia, L. G., de Moraes Maia, M. L., da Costa Monini, A., Vianna, A. P., & Gandini, L. G. (2011). Photoelastic analysis of forces generated by T-loop springs made with stainless steel or titanium-molybdenum alloy. American Journal of Orthodontics and Dentofacial Orthopedics, 140(3), e123–e128. DOI: https://doi.org/10.1016/j.ajodo.2011.03.020

10 Melsen, B., Fiorelli, G., & Bergamini, A. (1996). Uprighting of lower molars. Journal of Clinical Orthodontics, 30(11), 640–645.

11 Nakamura, A., Teratani, T., Itoh, H., Sugawara, J., & Ishikawa, H. (2007). Photoelastic stress analysis of mandibular molars moved distally with the skeletal anchorage system. American Journal of Orthodontics and Dentofacial Orthopedics, 132(5), 624–629. DOI: https://doi.org/10.1016/j.ajodo.2005.11.041

12 Nogueira, A. V., de Molon, R. S., Nokhbehsaim, M., Deschner, J., & Cirelli, J. A. (2017). Contribution of biomechanical forces to inflammation-induced bone resorption. Journal of Clinical Periodontology, 44(1), 31–41. DOI: https://doi.org/10.1111/jcpe.12636

13 Normando, A. D., Maia, F. A., Ursi, W. J., & Simone, J. L. (2010). Dentoalveolar changes after unilateral extractions of mandibular first molars and their influence on third molar development and position. World Journal of Orthodontics, 11(1), 55–60.

14 Odo, C. H., Pimentel, M. J., Consani, R. L., Mesquita, M. F., & Nóbilo, M. A. (2015). Stress on external hexagon and Morse taper implants submitted to immediate loading. Journal of Oral Biology and Craniofacial Research, 5(3), 173–179. DOI: https://doi.org/10.1016/j.jobcr.2015.07.002

15 Presotto, A. G., Bhering, C. L., Mesquita, M. F., & Barão, V. A. (2017). Marginal fit and photoelastic stress analysis of CAD-CAM and overcast 3-unit implant-supported frameworks. The Journal of Prosthetic Dentistry, 117(3), 373–379. DOI: https://doi.org/10.1016/j.prosdent.2016.06.011

16 Ren, Y., Maltha, J. C., & Kuijpers-Jagtman, A. M. (2003). Optimum force magnitude for orthodontic tooth movement: A systematic literature review. The Angle Orthodontist, 73(1), 86–92.

17 Romeo, D. A., & Burstone, C. J. (1977). Tip-back mechanics. American Journal of Orthodontics, 72(4), 414–421. DOI: https://doi.org/10.1016/0002-9416(77)90354-2

18 Sander, F. G., & Wichelhaus, A. (1995). [The clinical use of the new NiTi-SE-steel uprighting spring]. Fortschritte der Kieferorthopädie, 56(6), 296–308. (Article in German) DOI: https://doi.org/10.1007/BF02173156

19 Sobral, G. C., Vedovello Filho, M., Degan, V. V., & Santamaria, M. (2014). Photoelastic analysis of stress generated by wires when conventional and self-ligating brackets are used: A pilot study. Dental Press Journal of Orthodontics, 19(5), 74–78. DOI: https://doi.org/10.1590/2176-9451.19.5.074-078.oar

20 Weiland, F. J., Bantleon, H. P., & Droschl, H. (1992). Molar uprighting with crossed tipback springs. Journal of Clinical Orthodontics, 26(6), 335–337.

21 Wichelhaus, A., & Sander, F. G. (1995). [The development and testing of a new NiTi-SE-steel uprighting spring]. Fortschritte der Kieferorthopädie, 56(6), 283–295. (Article in German) DOI: https://doi.org/10.1007/BF02173155

22 Zachrisson, B. U., & Bantleon, H. P. (2005). Optimal mechanics for mandibular molar uprighting. World Journal of Orthodontics, 6(1), 80–87

Downloads

Published

2026-01-08

How to Cite

PINHEIRO, Carolina Leão; BRANDÃO, Henrique Barcelos; STIVAL, Ana Carolina Costa; GANDINI, Alyssa Schiavon; SAMPAIO, Luana Paz; GANDINI JUNIOR, Luiz Gonzaga. PHOTOELASTIC STRESS ANALYSIS OF DIFFERENT MOLAR UPRIGHTING SPRINGS. LUMEN ET VIRTUS, [S. l.], v. 17, n. 56, p. e11702, 2026. DOI: 10.56238/levv17n56-019. Disponível em: https://periodicos.newsciencepubl.com/LEV/article/view/11702. Acesso em: 12 jan. 2026.