SELEÇÃO DE ISOLADOS BACTERIANOS PRODUTORES DE ALFA-AMILASE DE ECOSSISTEMAS AQUÁTICOS AMAZÔNICOS
DOI:
https://doi.org/10.56238/levv16n55-046Palavras-chave:
Biodiversidade, Microrganismos, Biomoléculas, EnzimaResumo
A biodiversidade amazônica representa uma fonte significativa de biomoléculas com potencial para aplicação biotecnológica. Essa biodiversidade pode ser aproveitada para o desenvolvimento de insumos aplicáveis ao setor industrial. Nesse contexto, as bactérias possuem a capacidade de secretar enzimas que podem servir a diversos propósitos, e a prospecção enzimática é considerada fundamental para o desenvolvimento socioeconômico do Brasil. Diante disso, o objetivo deste projeto foi prospectar alfa-amilase da microbiota bacteriana de um ecossistema aquático amazônico. Para isso, amostras de água foram coletadas no Lago Mamiá, na região do médio Solimões (Coari-AM), entre 2022 e 2023. Posteriormente, foram identificados isolados bacterianos com capacidade de hidrolisar amido. Em seguida, o DNA total foi extraído das bactérias amilolíticas para amplificação dos genes do RNA ribossomal 16S. Além disso, foram mensuradas as condições físico-químicas (Temperatura, pH e Condutividade Elétrica) do ecossistema aquático, juntamente com análises qualitativas e quantitativas da atividade de alfa-amilase. Em conclusão, a prospecção de enzimas da microbiota bacteriana do ecossistema aquático amazônico é de fundamental importância para a busca de novas biomoléculas que atendam às necessidades industriais em bioprocessos, bem como para o potencial de aplicação da enzima na produção de etanol a partir do processamento e fermentação do amido de mandioca cultivado na região amazônica.
Downloads
Referências
Ahuja K & Malkani T. 2023. Global markets and technologies for biofuel enzymes FOOD ENZYMES MARKET 2024 - 2032. ID GMI2477 https://www.gminsights.com/industryanalysis/food-enzymes-market. Accessed Ago 28, 2024.
Arnau J, Yaver D, Hjort CM. 2019. Strategies and challenges for the development of industrial enzymes using fungal cell factories. In: Grand challenges in fungal biotechnology. Springer Cham 179-210. https://doi.10.1007/978-3-030-29541-7_7. DOI: https://doi.org/10.1007/978-3-030-29541-7_7
Awan K, Jebeen F, Mansoura M, Qazi, JI. 2018. Potential of thermophilic amylolytic bcteria for growth in unconventinol media: Potato peels. J Food Process Eng 41:e12635. https://doi.org/10.1111/jfpe.12635. DOI: https://doi.org/10.1111/jfpe.12635
Bonnet MP, Pinel S, Garnier J, Bois J, Boaventura GR, Seyler P, Marques, DM. 2017. Amazon floodplain water balance based on modelling and analyses of hidrologic and electrical conductivity data. Hydrological Processes 31:1702-1718 https://doi.org/10.1002/hyp.11138. DOI: https://doi.org/10.1002/hyp.11138
De Sousa Lobo G, Wittmann F, Piedade MTF. 2019. Response of black-water floodplain (igapó) forests to flood pulse regulation in a dammed Amazonian river. Forest Ecology and Management 434:110-118. https://doi.org/10.1016/j.foreco.2018.12.001. DOI: https://doi.org/10.1016/j.foreco.2018.12.001
Devol AH, Forsberg BR, Richey JE, Pimentel TP. 1995. Seasonal variation in chemical distributions in the Amazon (Solimões) River: A multiyear time series. Global Biogeochemicol Cycles 9,3:307-328. https://doi.org/10.1029/95GB01145. DOI: https://doi.org/10.1029/95GB01145
Drake TW, Hemingway JD, Kurek MR, peucker-Ehrenbrink B, Brown CA, Holmes RM, Galy V, Moura JMS, Mitsuya M, Wassenaar LI, SIX J, Spencer RGM. 2021. The pulse of the Amazon: Fluxes of dissolved organic carbon, nutrients, and ions from the world’s largest River. Global Biogeochemicol Cycles. https://doi.org/10.1029/2020GB006895. DOI: https://doi.org/10.1029/2020GB006895
Effio PC, Silva EF, Pueyo MT. 2000. A simple and rapid method for screening amylolytic bacteria. Biochemical Education 28:47-49. https://doi.org/10.1016/S0307-4412(99)00102-8. DOI: https://doi.org/10.1111/j.1539-3429.2000.tb00014.x
Fearnside PM. 2018. Brazil’s Amazonian forest carbon: the key to Southern Amazonian significance for global climate. Regional Environmental Change 18:47-61. https:doi.org/10.1007/s10113-016-1007-2. DOI: https://doi.org/10.1007/s10113-016-1007-2
Freedonia Industry Study. 2017. Global industrial enzymes by product. Market and Region, 7th Edition. https://www.freedoniagroup.com/industry-study/global-industrial-enzymes-byproduct-market-and-region-7th-edition-3593.htm. Accessed Dez 20, 2022.
Hossain SMZ, Haki GD, Rakshit SK. 2006. Optimum production and characterization of thermostable amylolytic enzymes from B. stearothermophilus GRE1. The Canadion Journal of Chemmical Engineernig 84: 368-374. https://doi.org/10.1002/cjce.5450840313. DOI: https://doi.org/10.1002/cjce.5450840313
https://www.uv.mx/personal/tcarmona/files/2019/02/Pallardy-2008.pdf
Junk WJ, Piedade MTF, Schongart J, Wittmann F. 2012. A Classification of major natural habitats of Amazonian white-water river floodplains (várzeas). Wetlands Ecol Manage 20:461475. https://www.doi.org/10.1007/s11273-012-9268-0. DOI: https://doi.org/10.1007/s11273-012-9268-0
Junk WJ, Wittmann F, Schöngart J, Piedade MTF. 2015b. A classification of the major habitats of Amazonian black-water river floodplains and a comparison with their White-water counterparts. Wetlands Ecol Manage 23:677-693. https://doi.org/10.1007/s11273-015-9412-8. Disponivel em: https://link.springer.com/article/10.1007/s11273-015-9412-8. Acessado em: 20 nov. 2024. DOI: https://doi.org/10.1007/s11273-015-9412-8
Junk WJ. 1997. The central Amazon Floodplains. Ecology of a pulsing system vol.126, ISSN:0070-8356, ISBN:978-3-642-08214-6. http://doi.org/10.1007/978-3-662-03416-3. DOI: https://doi.org/10.1007/978-3-662-03416-3
Junk, WJ, Piedade MTF, Schongart J, Wittmann F. 2015a. A Classificação dos Macrohabitats das Várzeas Amazônicas. Em: CUNHA CN, PIEDADE MTF, Junk WJ, (Eds.). Classificação e Delineamento das Áreas Úmidas Brasileiras e de seus Macrohabitats. Instituto Nacional de Áreas Úmidas (INAU), Editora da UFMT Cuiabá-MT, p. 122-153 ISBN 978-85-327-0557-0. http://cppantanal.org.br/wp-content/uploads/2017/04/E-book-Classificacao-e-Delineamentodas-AUs.pdf.
Kurek MR, Stubbins A, Drake TW, Moura JMS, Holmes MR, Osterholz H, Dittmar T, Ehrenbrink BP, Mitsuya M, Spencer RGM. 2021. Drivers of organic molecular signatures in the Amazon river. Global Biogeochemicol Cycles 35:e2021GB006938. https://doi.org/10.1029/2021GB006938. DOI: https://doi.org/10.1029/2021GB006938
Liu JH, Guo JN, Lu H, Lin J. 2022. Activity-Based Screening of Soil Samples from Nyingchi, Tibet, for Amylase-Producing Bacteria and Other Multifunctional Enzyme Capacities. International journal of microbiology 2022:15 article ID 2401766. https://doi.org/10.1155/2022/2401766. DOI: https://doi.org/10.1155/2022/2401766
Malhi Y. 2012. The productivity, metabolism and carbon cycle of tropical forest vegetation. Journal of Ecology 100:65-75. https://doi.org/10.1111/j.1365-2745.2011.01916.x. DOI: https://doi.org/10.1111/j.1365-2745.2011.01916.x
Melack JM & Coe MT. 2021. Amazon floodplain hydrology and implications for aquatic conservation. Aquatic Conservation: Marine and Freshwater Ecosystems 31:1029-1040. https://doi.org/10.1002/aqc.3558 DOI: https://doi.org/10.1002/aqc.3558
Mojallali L, Shahbani ZH, Rajaei S, Noghabi KA, Haghbeen K. 2013. A novel 34-kDa α-amylase from psychrotroph Exiguobacterium sp. SH3: Production, purification, and characterization. Biotechnology and Applied Biochemistry 61:118-125. https://doi.org/10.1002/bab.1140. DOI: https://doi.org/10.1002/bab.1140
Monteiro VN & Silva RN. 2009. Aplicação industrial da biotecnologia enzimática. Revista Processos Químicos 3:9-23. https://doi:10.19142/rpq.v3i5.83. DOI: https://doi.org/10.19142/rpq.v3i5.83
Muriithi J, Matofari JW, Nduko JM. 2021. Amylolytic microorganisms from diverse tropical environments: Isolation, identification, and amylases production. Applied Research 2022;1:e202100007. https://doi.org/10.1002/appl.202100007. DOI: https://doi.org/10.1002/appl.202100007
Pallardy SG. 2008. Mineral nutriton. End: chapter 10 - Physiology of woody plants (Third Edition). Academic press pp255-285. DOI: https://doi.org/10.1016/B978-012088765-1.50011-7
Pascon RC, Bergamo RF, Spinelli RX, Souza ED, Assis DM, Juliano L, Vallim MA. 2011. Microrganismo amilolítico da compostagem do Zoológico de São Paulo: isolamento, identificação e produção de amilase. Enzyme Research ID 679624,8 páginas. https://doi.org/10.4061/2011/679624. DOI: https://doi.org/10.4061/2011/679624
Pereira EJAL, Ferreira PJS, Ribeiro LCS, Carvalho TS, Perreira HBB. 2019. Policy in Brazil (2016-2019) threatens conservation of the Amazon rainforest. Environmental Science & Policy v100,8-12. https://doi.org/10.1016/j.envsci.2019.06.001. DOI: https://doi.org/10.1016/j.envsci.2019.06.001
Ritter CD, Forster D, Azevedo JAR, Antonelli A, Nilsson RH, Trujillo ME, Dunthorn M. 2021. Assessing Biotic and Abiotic Interactions of Microorganisms in Amazonia through Co-Occurrence Networks and DNA Metabarcoding. Microbial Ecology 8:1-15. https://doi.org/10.1007/s00248-021-01719-6. DOI: https://doi.org/10.21203/rs.3.rs-184472/v1
Sambrook J & Russell DW. 2001. Molecular Cloning: A Laboratory Manual, 3rd Ed., Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, Chaper 8, 8.18-8.24 and 8.77-8.86 p., Chaper 12, 12.51-12.73 p. https://legado.moodle.ufsc.br/pluginfile.php/1376626/mod_resource/content/0/Sambrook.
Serviço Geologico do Brasil-SBG 2023. Boletim de monitoramento hidrometeorológico da Amazônia Ocidental. Boletim nº 40 – Oct 6, 2023. https://www.sgb.gov.br/sace/boletins/Amazonas/20231006_17-20231006%20%20175800.pdf. Accessed Jan 20, 2025.
Sezonov G, Joseleau-Petit D, and D’ari Richard. 2007. Echerichia coli Physiology in LauriaBertani Broth. American Society for Microbiology, Journal of Bacteriology 189(23):87468749. doi:10.1128/JB.01368-07. https://pubmed.ncbi.nlm.nih.gov/17905994/. DOI: https://doi.org/10.1128/JB.01368-07
Tejada JV, Flynn J, Antoine PO, Pacheco V, Salas-Gismondi R, Cerling TE. 2020. Comparative isotope ecology of western Amazonian rainforest mammals. Proceedings of the National Academy of Sciences 117(42):6263-26272. doi: 10.1073/pnas.2007440117. DOI: https://doi.org/10.1073/pnas.2007440117
Wittmann F, Wonlfgang JJ, Piedade MTF. 2004. The várzea forests in Amazonia: flooding and the highly dynamic geomorphology interact with natural forest succession. Forest Ecology and Management 196:199-212. https://doi.org/10.1016/j.foreco.2004.02.060. DOI: https://doi.org/10.1016/j.foreco.2004.02.060