SELECTION OF ALPHA-AMYLASE PRODUCING BACTERIAL ISOLATES FROM AMAZONIAN AQUATIC ECOSYSTEM

Authors

  • Rogério de Oliveira Neves Author
  • Joedeson Rosa da Silva Author
  • Raoni Gwinner Author
  • Edson Junior do Carmo Author
  • Natália Dayane Moura Carvalho Author
  • Gilvan Ferreira da Silva Author

DOI:

https://doi.org/10.56238/levv16n55-046

Keywords:

Biodiversity, Microorganisms, Biomolecules, Enzyme

Abstract

The Amazonian biodiversity represents a significant source of biomolecules with potential for biotechnological application. This biodiversity can be harnessed for the development of inputs applicable to the industrial sector. In this context, bacteria possess the ability to secrete enzymes that can serve various purposes, and enzyme prospecting is considered fundamental for Brazil's socioeconomic development. Given this, the objective of this project was to prospect for alpha-amylase from the bacterial microbiota of an Amazonian aquatic ecosystem. To achieve this, water samples were collected from Lake Mamiá in the mid-Solimões region (Coari-AM) between 2022 and 2023. Subsequently, bacterial isolates with the capacity to hydrolyze starch were identified. Total DNA was then extracted from the amylolytic bacteria for amplification of the 16S Ribosomal RNA genes. Furthermore, the physicochemical conditions (Temperature, pH, and Electrical Conductivity) of the aquatic ecosystem were measured, alongside qualitative and quantitative analyses of alpha-amylase activity. In conclusion, the prospecting of enzymes from the bacterial microbiota of the Amazonian aquatic ecosystem is of fundamental importance for the search for novel biomolecules that meet industrial needs in bioprocesses, as well as for the enzyme's potential application in ethanol production from the processing and fermentation of cassava starch cultivated in the Amazon region.

Downloads

Download data is not yet available.

References

Ahuja K & Malkani T. 2023. Global markets and technologies for biofuel enzymes FOOD ENZYMES MARKET 2024 - 2032. ID GMI2477 https://www.gminsights.com/industryanalysis/food-enzymes-market. Accessed Ago 28, 2024.

Arnau J, Yaver D, Hjort CM. 2019. Strategies and challenges for the development of industrial enzymes using fungal cell factories. In: Grand challenges in fungal biotechnology. Springer Cham 179-210. https://doi.10.1007/978-3-030-29541-7_7. DOI: https://doi.org/10.1007/978-3-030-29541-7_7

Awan K, Jebeen F, Mansoura M, Qazi, JI. 2018. Potential of thermophilic amylolytic bcteria for growth in unconventinol media: Potato peels. J Food Process Eng 41:e12635. https://doi.org/10.1111/jfpe.12635. DOI: https://doi.org/10.1111/jfpe.12635

Bonnet MP, Pinel S, Garnier J, Bois J, Boaventura GR, Seyler P, Marques, DM. 2017. Amazon floodplain water balance based on modelling and analyses of hidrologic and electrical conductivity data. Hydrological Processes 31:1702-1718 https://doi.org/10.1002/hyp.11138. DOI: https://doi.org/10.1002/hyp.11138

De Sousa Lobo G, Wittmann F, Piedade MTF. 2019. Response of black-water floodplain (igapó) forests to flood pulse regulation in a dammed Amazonian river. Forest Ecology and Management 434:110-118. https://doi.org/10.1016/j.foreco.2018.12.001. DOI: https://doi.org/10.1016/j.foreco.2018.12.001

Devol AH, Forsberg BR, Richey JE, Pimentel TP. 1995. Seasonal variation in chemical distributions in the Amazon (Solimões) River: A multiyear time series. Global Biogeochemicol Cycles 9,3:307-328. https://doi.org/10.1029/95GB01145. DOI: https://doi.org/10.1029/95GB01145

Drake TW, Hemingway JD, Kurek MR, peucker-Ehrenbrink B, Brown CA, Holmes RM, Galy V, Moura JMS, Mitsuya M, Wassenaar LI, SIX J, Spencer RGM. 2021. The pulse of the Amazon: Fluxes of dissolved organic carbon, nutrients, and ions from the world’s largest River. Global Biogeochemicol Cycles. https://doi.org/10.1029/2020GB006895. DOI: https://doi.org/10.1029/2020GB006895

Effio PC, Silva EF, Pueyo MT. 2000. A simple and rapid method for screening amylolytic bacteria. Biochemical Education 28:47-49. https://doi.org/10.1016/S0307-4412(99)00102-8. DOI: https://doi.org/10.1111/j.1539-3429.2000.tb00014.x

Fearnside PM. 2018. Brazil’s Amazonian forest carbon: the key to Southern Amazonian significance for global climate. Regional Environmental Change 18:47-61. https:doi.org/10.1007/s10113-016-1007-2. DOI: https://doi.org/10.1007/s10113-016-1007-2

Freedonia Industry Study. 2017. Global industrial enzymes by product. Market and Region, 7th Edition. https://www.freedoniagroup.com/industry-study/global-industrial-enzymes-byproduct-market-and-region-7th-edition-3593.htm. Accessed Dez 20, 2022.

Hossain SMZ, Haki GD, Rakshit SK. 2006. Optimum production and characterization of thermostable amylolytic enzymes from B. stearothermophilus GRE1. The Canadion Journal of Chemmical Engineernig 84: 368-374. https://doi.org/10.1002/cjce.5450840313. DOI: https://doi.org/10.1002/cjce.5450840313

https://www.uv.mx/personal/tcarmona/files/2019/02/Pallardy-2008.pdf

Junk WJ, Piedade MTF, Schongart J, Wittmann F. 2012. A Classification of major natural habitats of Amazonian white-water river floodplains (várzeas). Wetlands Ecol Manage 20:461475. https://www.doi.org/10.1007/s11273-012-9268-0. DOI: https://doi.org/10.1007/s11273-012-9268-0

Junk WJ, Wittmann F, Schöngart J, Piedade MTF. 2015b. A classification of the major habitats of Amazonian black-water river floodplains and a comparison with their White-water counterparts. Wetlands Ecol Manage 23:677-693. https://doi.org/10.1007/s11273-015-9412-8. Disponivel em: https://link.springer.com/article/10.1007/s11273-015-9412-8. Acessado em: 20 nov. 2024. DOI: https://doi.org/10.1007/s11273-015-9412-8

Junk WJ. 1997. The central Amazon Floodplains. Ecology of a pulsing system vol.126, ISSN:0070-8356, ISBN:978-3-642-08214-6. http://doi.org/10.1007/978-3-662-03416-3. DOI: https://doi.org/10.1007/978-3-662-03416-3

Junk, WJ, Piedade MTF, Schongart J, Wittmann F. 2015a. A Classificação dos Macrohabitats das Várzeas Amazônicas. Em: CUNHA CN, PIEDADE MTF, Junk WJ, (Eds.). Classificação e Delineamento das Áreas Úmidas Brasileiras e de seus Macrohabitats. Instituto Nacional de Áreas Úmidas (INAU), Editora da UFMT Cuiabá-MT, p. 122-153 ISBN 978-85-327-0557-0. http://cppantanal.org.br/wp-content/uploads/2017/04/E-book-Classificacao-e-Delineamentodas-AUs.pdf.

Kurek MR, Stubbins A, Drake TW, Moura JMS, Holmes MR, Osterholz H, Dittmar T, Ehrenbrink BP, Mitsuya M, Spencer RGM. 2021. Drivers of organic molecular signatures in the Amazon river. Global Biogeochemicol Cycles 35:e2021GB006938. https://doi.org/10.1029/2021GB006938. DOI: https://doi.org/10.1029/2021GB006938

Liu JH, Guo JN, Lu H, Lin J. 2022. Activity-Based Screening of Soil Samples from Nyingchi, Tibet, for Amylase-Producing Bacteria and Other Multifunctional Enzyme Capacities. International journal of microbiology 2022:15 article ID 2401766. https://doi.org/10.1155/2022/2401766. DOI: https://doi.org/10.1155/2022/2401766

Malhi Y. 2012. The productivity, metabolism and carbon cycle of tropical forest vegetation. Journal of Ecology 100:65-75. https://doi.org/10.1111/j.1365-2745.2011.01916.x. DOI: https://doi.org/10.1111/j.1365-2745.2011.01916.x

Melack JM & Coe MT. 2021. Amazon floodplain hydrology and implications for aquatic conservation. Aquatic Conservation: Marine and Freshwater Ecosystems 31:1029-1040. https://doi.org/10.1002/aqc.3558 DOI: https://doi.org/10.1002/aqc.3558

Mojallali L, Shahbani ZH, Rajaei S, Noghabi KA, Haghbeen K. 2013. A novel 34-kDa α-amylase from psychrotroph Exiguobacterium sp. SH3: Production, purification, and characterization. Biotechnology and Applied Biochemistry 61:118-125. https://doi.org/10.1002/bab.1140. DOI: https://doi.org/10.1002/bab.1140

Monteiro VN & Silva RN. 2009. Aplicação industrial da biotecnologia enzimática. Revista Processos Químicos 3:9-23. https://doi:10.19142/rpq.v3i5.83. DOI: https://doi.org/10.19142/rpq.v3i5.83

Muriithi J, Matofari JW, Nduko JM. 2021. Amylolytic microorganisms from diverse tropical environments: Isolation, identification, and amylases production. Applied Research 2022;1:e202100007. https://doi.org/10.1002/appl.202100007. DOI: https://doi.org/10.1002/appl.202100007

Pallardy SG. 2008. Mineral nutriton. End: chapter 10 - Physiology of woody plants (Third Edition). Academic press pp255-285. DOI: https://doi.org/10.1016/B978-012088765-1.50011-7

Pascon RC, Bergamo RF, Spinelli RX, Souza ED, Assis DM, Juliano L, Vallim MA. 2011. Microrganismo amilolítico da compostagem do Zoológico de São Paulo: isolamento, identificação e produção de amilase. Enzyme Research ID 679624,8 páginas. https://doi.org/10.4061/2011/679624. DOI: https://doi.org/10.4061/2011/679624

Pereira EJAL, Ferreira PJS, Ribeiro LCS, Carvalho TS, Perreira HBB. 2019. Policy in Brazil (2016-2019) threatens conservation of the Amazon rainforest. Environmental Science & Policy v100,8-12. https://doi.org/10.1016/j.envsci.2019.06.001. DOI: https://doi.org/10.1016/j.envsci.2019.06.001

Ritter CD, Forster D, Azevedo JAR, Antonelli A, Nilsson RH, Trujillo ME, Dunthorn M. 2021. Assessing Biotic and Abiotic Interactions of Microorganisms in Amazonia through Co-Occurrence Networks and DNA Metabarcoding. Microbial Ecology 8:1-15. https://doi.org/10.1007/s00248-021-01719-6. DOI: https://doi.org/10.21203/rs.3.rs-184472/v1

Sambrook J & Russell DW. 2001. Molecular Cloning: A Laboratory Manual, 3rd Ed., Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, Chaper 8, 8.18-8.24 and 8.77-8.86 p., Chaper 12, 12.51-12.73 p. https://legado.moodle.ufsc.br/pluginfile.php/1376626/mod_resource/content/0/Sambrook.

Serviço Geologico do Brasil-SBG 2023. Boletim de monitoramento hidrometeorológico da Amazônia Ocidental. Boletim nº 40 – Oct 6, 2023. https://www.sgb.gov.br/sace/boletins/Amazonas/20231006_17-20231006%20%20175800.pdf. Accessed Jan 20, 2025.

Sezonov G, Joseleau-Petit D, and D’ari Richard. 2007. Echerichia coli Physiology in LauriaBertani Broth. American Society for Microbiology, Journal of Bacteriology 189(23):87468749. doi:10.1128/JB.01368-07. https://pubmed.ncbi.nlm.nih.gov/17905994/. DOI: https://doi.org/10.1128/JB.01368-07

Tejada JV, Flynn J, Antoine PO, Pacheco V, Salas-Gismondi R, Cerling TE. 2020. Comparative isotope ecology of western Amazonian rainforest mammals. Proceedings of the National Academy of Sciences 117(42):6263-26272. doi: 10.1073/pnas.2007440117. DOI: https://doi.org/10.1073/pnas.2007440117

Wittmann F, Wonlfgang JJ, Piedade MTF. 2004. The várzea forests in Amazonia: flooding and the highly dynamic geomorphology interact with natural forest succession. Forest Ecology and Management 196:199-212. https://doi.org/10.1016/j.foreco.2004.02.060. DOI: https://doi.org/10.1016/j.foreco.2004.02.060

Downloads

Published

2025-12-09

How to Cite

NEVES, Rogério de Oliveira; DA SILVA, Joedeson Rosa; GWINNER, Raoni; DO CARMO, Edson Junior; CARVALHO, Natália Dayane Moura; DA SILVA, Gilvan Ferreira. SELECTION OF ALPHA-AMYLASE PRODUCING BACTERIAL ISOLATES FROM AMAZONIAN AQUATIC ECOSYSTEM. LUMEN ET VIRTUS, [S. l.], v. 16, n. 55, p. e10892, 2025. DOI: 10.56238/levv16n55-046. Disponível em: https://periodicos.newsciencepubl.com/LEV/article/view/10892. Acesso em: 17 feb. 2026.