SELECCIÓN DE AISLADOS BACTERIANOS PRODUCTORES DE ALFA-AMILASA DE ECOSISTEMAS ACUÁTICOS AMAZÓNICOS

Autores/as

  • Rogério de Oliveira Neves Autor/a
  • Joedeson Rosa da Silva Autor/a
  • Raoni Gwinner Autor/a
  • Edson Junior do Carmo Autor/a
  • Natália Dayane Moura Carvalho Autor/a
  • Gilvan Ferreira da Silva Autor/a

DOI:

https://doi.org/10.56238/levv16n55-046

Palabras clave:

Biodiversidad, Microorganismos, Biomoléculas, Enzima

Resumen

La biodiversidad amazónica representa una fuente significativa de biomoléculas con potencial para aplicación biotecnológica. Esta biodiversidad puede aprovecharse para el desarrollo de insumos aplicables al sector industrial. En este contexto, las bacterias poseen la capacidad de secretar enzimas que pueden servir para diversos propósitos, y la prospección enzimática se considera fundamental para el desarrollo socioeconómico de Brasil. Ante esto, el objetivo de este proyecto fue prospectar alfa-amilasa a partir de la microbiota bacteriana de un ecosistema acuático amazónico. Para ello, se recolectaron muestras de agua del Lago Mamiá, en la región del medio Solimões (Coari-AM), entre 2022 y 2023. Posteriormente, se identificaron aislados bacterianos con capacidad de hidrolizar almidón. Luego, se extrajo el ADN total de las bacterias amilolíticas para la amplificación de los genes del ARN ribosomal 16S. Además, se midieron las condiciones fisicoquímicas (Temperatura, pH y Conductividad Eléctrica) del ecosistema acuático, junto con análisis cualitativos y cuantitativos de la actividad de alfa-amilasa. En conclusión, la prospección de enzimas de la microbiota bacteriana del ecosistema acuático amazónico es de fundamental importancia para la búsqueda de nuevas biomoléculas que satisfagan las necesidades industriales en bioprocesos, así como para el potencial de aplicación de la enzima en la producción de etanol a partir del procesamiento y fermentación del almidón de yuca cultivado en la región amazónica.

Descargas

Los datos de descarga aún no están disponibles.

Referencias

Ahuja K & Malkani T. 2023. Global markets and technologies for biofuel enzymes FOOD ENZYMES MARKET 2024 - 2032. ID GMI2477 https://www.gminsights.com/industryanalysis/food-enzymes-market. Accessed Ago 28, 2024.

Arnau J, Yaver D, Hjort CM. 2019. Strategies and challenges for the development of industrial enzymes using fungal cell factories. In: Grand challenges in fungal biotechnology. Springer Cham 179-210. https://doi.10.1007/978-3-030-29541-7_7. DOI: https://doi.org/10.1007/978-3-030-29541-7_7

Awan K, Jebeen F, Mansoura M, Qazi, JI. 2018. Potential of thermophilic amylolytic bcteria for growth in unconventinol media: Potato peels. J Food Process Eng 41:e12635. https://doi.org/10.1111/jfpe.12635. DOI: https://doi.org/10.1111/jfpe.12635

Bonnet MP, Pinel S, Garnier J, Bois J, Boaventura GR, Seyler P, Marques, DM. 2017. Amazon floodplain water balance based on modelling and analyses of hidrologic and electrical conductivity data. Hydrological Processes 31:1702-1718 https://doi.org/10.1002/hyp.11138. DOI: https://doi.org/10.1002/hyp.11138

De Sousa Lobo G, Wittmann F, Piedade MTF. 2019. Response of black-water floodplain (igapó) forests to flood pulse regulation in a dammed Amazonian river. Forest Ecology and Management 434:110-118. https://doi.org/10.1016/j.foreco.2018.12.001. DOI: https://doi.org/10.1016/j.foreco.2018.12.001

Devol AH, Forsberg BR, Richey JE, Pimentel TP. 1995. Seasonal variation in chemical distributions in the Amazon (Solimões) River: A multiyear time series. Global Biogeochemicol Cycles 9,3:307-328. https://doi.org/10.1029/95GB01145. DOI: https://doi.org/10.1029/95GB01145

Drake TW, Hemingway JD, Kurek MR, peucker-Ehrenbrink B, Brown CA, Holmes RM, Galy V, Moura JMS, Mitsuya M, Wassenaar LI, SIX J, Spencer RGM. 2021. The pulse of the Amazon: Fluxes of dissolved organic carbon, nutrients, and ions from the world’s largest River. Global Biogeochemicol Cycles. https://doi.org/10.1029/2020GB006895. DOI: https://doi.org/10.1029/2020GB006895

Effio PC, Silva EF, Pueyo MT. 2000. A simple and rapid method for screening amylolytic bacteria. Biochemical Education 28:47-49. https://doi.org/10.1016/S0307-4412(99)00102-8. DOI: https://doi.org/10.1111/j.1539-3429.2000.tb00014.x

Fearnside PM. 2018. Brazil’s Amazonian forest carbon: the key to Southern Amazonian significance for global climate. Regional Environmental Change 18:47-61. https:doi.org/10.1007/s10113-016-1007-2. DOI: https://doi.org/10.1007/s10113-016-1007-2

Freedonia Industry Study. 2017. Global industrial enzymes by product. Market and Region, 7th Edition. https://www.freedoniagroup.com/industry-study/global-industrial-enzymes-byproduct-market-and-region-7th-edition-3593.htm. Accessed Dez 20, 2022.

Hossain SMZ, Haki GD, Rakshit SK. 2006. Optimum production and characterization of thermostable amylolytic enzymes from B. stearothermophilus GRE1. The Canadion Journal of Chemmical Engineernig 84: 368-374. https://doi.org/10.1002/cjce.5450840313. DOI: https://doi.org/10.1002/cjce.5450840313

https://www.uv.mx/personal/tcarmona/files/2019/02/Pallardy-2008.pdf

Junk WJ, Piedade MTF, Schongart J, Wittmann F. 2012. A Classification of major natural habitats of Amazonian white-water river floodplains (várzeas). Wetlands Ecol Manage 20:461475. https://www.doi.org/10.1007/s11273-012-9268-0. DOI: https://doi.org/10.1007/s11273-012-9268-0

Junk WJ, Wittmann F, Schöngart J, Piedade MTF. 2015b. A classification of the major habitats of Amazonian black-water river floodplains and a comparison with their White-water counterparts. Wetlands Ecol Manage 23:677-693. https://doi.org/10.1007/s11273-015-9412-8. Disponivel em: https://link.springer.com/article/10.1007/s11273-015-9412-8. Acessado em: 20 nov. 2024. DOI: https://doi.org/10.1007/s11273-015-9412-8

Junk WJ. 1997. The central Amazon Floodplains. Ecology of a pulsing system vol.126, ISSN:0070-8356, ISBN:978-3-642-08214-6. http://doi.org/10.1007/978-3-662-03416-3. DOI: https://doi.org/10.1007/978-3-662-03416-3

Junk, WJ, Piedade MTF, Schongart J, Wittmann F. 2015a. A Classificação dos Macrohabitats das Várzeas Amazônicas. Em: CUNHA CN, PIEDADE MTF, Junk WJ, (Eds.). Classificação e Delineamento das Áreas Úmidas Brasileiras e de seus Macrohabitats. Instituto Nacional de Áreas Úmidas (INAU), Editora da UFMT Cuiabá-MT, p. 122-153 ISBN 978-85-327-0557-0. http://cppantanal.org.br/wp-content/uploads/2017/04/E-book-Classificacao-e-Delineamentodas-AUs.pdf.

Kurek MR, Stubbins A, Drake TW, Moura JMS, Holmes MR, Osterholz H, Dittmar T, Ehrenbrink BP, Mitsuya M, Spencer RGM. 2021. Drivers of organic molecular signatures in the Amazon river. Global Biogeochemicol Cycles 35:e2021GB006938. https://doi.org/10.1029/2021GB006938. DOI: https://doi.org/10.1029/2021GB006938

Liu JH, Guo JN, Lu H, Lin J. 2022. Activity-Based Screening of Soil Samples from Nyingchi, Tibet, for Amylase-Producing Bacteria and Other Multifunctional Enzyme Capacities. International journal of microbiology 2022:15 article ID 2401766. https://doi.org/10.1155/2022/2401766. DOI: https://doi.org/10.1155/2022/2401766

Malhi Y. 2012. The productivity, metabolism and carbon cycle of tropical forest vegetation. Journal of Ecology 100:65-75. https://doi.org/10.1111/j.1365-2745.2011.01916.x. DOI: https://doi.org/10.1111/j.1365-2745.2011.01916.x

Melack JM & Coe MT. 2021. Amazon floodplain hydrology and implications for aquatic conservation. Aquatic Conservation: Marine and Freshwater Ecosystems 31:1029-1040. https://doi.org/10.1002/aqc.3558 DOI: https://doi.org/10.1002/aqc.3558

Mojallali L, Shahbani ZH, Rajaei S, Noghabi KA, Haghbeen K. 2013. A novel 34-kDa α-amylase from psychrotroph Exiguobacterium sp. SH3: Production, purification, and characterization. Biotechnology and Applied Biochemistry 61:118-125. https://doi.org/10.1002/bab.1140. DOI: https://doi.org/10.1002/bab.1140

Monteiro VN & Silva RN. 2009. Aplicação industrial da biotecnologia enzimática. Revista Processos Químicos 3:9-23. https://doi:10.19142/rpq.v3i5.83. DOI: https://doi.org/10.19142/rpq.v3i5.83

Muriithi J, Matofari JW, Nduko JM. 2021. Amylolytic microorganisms from diverse tropical environments: Isolation, identification, and amylases production. Applied Research 2022;1:e202100007. https://doi.org/10.1002/appl.202100007. DOI: https://doi.org/10.1002/appl.202100007

Pallardy SG. 2008. Mineral nutriton. End: chapter 10 - Physiology of woody plants (Third Edition). Academic press pp255-285. DOI: https://doi.org/10.1016/B978-012088765-1.50011-7

Pascon RC, Bergamo RF, Spinelli RX, Souza ED, Assis DM, Juliano L, Vallim MA. 2011. Microrganismo amilolítico da compostagem do Zoológico de São Paulo: isolamento, identificação e produção de amilase. Enzyme Research ID 679624,8 páginas. https://doi.org/10.4061/2011/679624. DOI: https://doi.org/10.4061/2011/679624

Pereira EJAL, Ferreira PJS, Ribeiro LCS, Carvalho TS, Perreira HBB. 2019. Policy in Brazil (2016-2019) threatens conservation of the Amazon rainforest. Environmental Science & Policy v100,8-12. https://doi.org/10.1016/j.envsci.2019.06.001. DOI: https://doi.org/10.1016/j.envsci.2019.06.001

Ritter CD, Forster D, Azevedo JAR, Antonelli A, Nilsson RH, Trujillo ME, Dunthorn M. 2021. Assessing Biotic and Abiotic Interactions of Microorganisms in Amazonia through Co-Occurrence Networks and DNA Metabarcoding. Microbial Ecology 8:1-15. https://doi.org/10.1007/s00248-021-01719-6. DOI: https://doi.org/10.21203/rs.3.rs-184472/v1

Sambrook J & Russell DW. 2001. Molecular Cloning: A Laboratory Manual, 3rd Ed., Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, Chaper 8, 8.18-8.24 and 8.77-8.86 p., Chaper 12, 12.51-12.73 p. https://legado.moodle.ufsc.br/pluginfile.php/1376626/mod_resource/content/0/Sambrook.

Serviço Geologico do Brasil-SBG 2023. Boletim de monitoramento hidrometeorológico da Amazônia Ocidental. Boletim nº 40 – Oct 6, 2023. https://www.sgb.gov.br/sace/boletins/Amazonas/20231006_17-20231006%20%20175800.pdf. Accessed Jan 20, 2025.

Sezonov G, Joseleau-Petit D, and D’ari Richard. 2007. Echerichia coli Physiology in LauriaBertani Broth. American Society for Microbiology, Journal of Bacteriology 189(23):87468749. doi:10.1128/JB.01368-07. https://pubmed.ncbi.nlm.nih.gov/17905994/. DOI: https://doi.org/10.1128/JB.01368-07

Tejada JV, Flynn J, Antoine PO, Pacheco V, Salas-Gismondi R, Cerling TE. 2020. Comparative isotope ecology of western Amazonian rainforest mammals. Proceedings of the National Academy of Sciences 117(42):6263-26272. doi: 10.1073/pnas.2007440117. DOI: https://doi.org/10.1073/pnas.2007440117

Wittmann F, Wonlfgang JJ, Piedade MTF. 2004. The várzea forests in Amazonia: flooding and the highly dynamic geomorphology interact with natural forest succession. Forest Ecology and Management 196:199-212. https://doi.org/10.1016/j.foreco.2004.02.060. DOI: https://doi.org/10.1016/j.foreco.2004.02.060

Descargas

Publicado

2025-12-09

Cómo citar

NEVES, Rogério de Oliveira; DA SILVA, Joedeson Rosa; GWINNER, Raoni; DO CARMO, Edson Junior; CARVALHO, Natália Dayane Moura; DA SILVA, Gilvan Ferreira. SELECCIÓN DE AISLADOS BACTERIANOS PRODUCTORES DE ALFA-AMILASA DE ECOSISTEMAS ACUÁTICOS AMAZÓNICOS. LUMEN ET VIRTUS, [S. l.], v. 16, n. 55, p. e10892, 2025. DOI: 10.56238/levv16n55-046. Disponível em: https://periodicos.newsciencepubl.com/LEV/article/view/10892. Acesso em: 17 feb. 2026.