O CÉREBRO TEM FOME DE MIRTILO
DOI:
https://doi.org/10.56238/arev8n1-027Palavras-chave:
Mirtilo, Blueberry, Saúde, Cérebro, Neurogênese, NeuroplasticidadeResumo
Na última década, diversos estudos sobre alimentos para a saúde tem demonstrado que o mirtilo (blueberry) apresenta uma série de benefícios para a saúde humana. Nesse sentido, iremos verificar nesse artigo o papel dos mirtilos na saúde cerebral, com ênfase na formação de novos neurônios.
Downloads
Referências
Augusto-Oliveira, M., Arrifano, G. P. F., Malva, J. O., & Crespo-Lopez, M. E. (2019). Adult hippocampal neurogenesis in different taxonomic groups: Possible functional similarities and striking controversies. Cells, 8(2), 125, https://doi.org/10.3390/cells8020125. DOI: https://doi.org/10.3390/cells8020125
Cahoon, D. S., Fisher, D. R., Lamon-Fava, S., Wu, D., Zheng, T., & Shukitt-Hale, B. (2023). Blueberry treatment administered before and/or after lipopolysaccharide stimulation attenuates inflammation and oxidative stress in rat microglial cells. Nutritional neuroscience, 26(2), 127–137, https://doi.org/10.1080/1028415X.2021.2020404. DOI: https://doi.org/10.1080/1028415X.2021.2020404
Carpenedo, S., Raseira, M.D.C.B., Franzon, R.C. Importância e perspectivas para a cultura do mirtilo no Brasil: Documentos. 526. ed. Pelotas, RS: Embrapa, 2022. p. 9-19.
Carvalho, M. F., Lucca, A. B. A., Ribeiro E Silva, V. R., Macedo, L. R., & Silva, M. (2021). Blueberry intervention improves metabolic syndrome risk factors: systematic review and meta-analysis. Nutrition research 91, 67–80, https://doi.org/10.1016/j.nutres.2021.04.006. DOI: https://doi.org/10.1016/j.nutres.2021.04.006
Cassidy, A., Mukamal, K. J., Liu, L., Franz, M., Eliassen, A. H., & Rimm, E. B. (2013). High anthocyanin intake is associated with a reduced risk of myocardial infarction in young and middle-aged women. Circulation, 127(2), 188–196, https://doi.org/10.1161/CIRCULATIONAHA.112.122408. DOI: https://doi.org/10.1161/CIRCULATIONAHA.112.122408
Cassidy, A., O'Reilly, É. J., Kay, C., Sampson, L., Franz, M., Forman, J. P., Curhan, G., & Rimm, E. B. (2011). Habitual intake of flavonoid subclasses and incident hypertension in adults. The American journal of clinical nutrition, 93(2), 338–347, https://doi.org/10.3945/ajcn.110.006783. DOI: https://doi.org/10.3945/ajcn.110.006783
Devore, E. E., Kang, J. H., Breteler, M. M., & Grodstein, F. (2012). Dietary intakes of berries and flavonoids in relation to cognitive decline. Annals of neurology, 72(1), 135–143, https://doi.org/10.1002/ana.23594. DOI: https://doi.org/10.1002/ana.23594
Doraiswamy, P. M., Miller, M. G., Hellegers, C. A., Nwosu, A., Choe, J., & Murdoch, D. M. (2023). Blueberry Supplementation Effects on Neuronal and Pathological Biomarkers in Subjects at Risk for Alzheimer's Disease: A Pilot Study. JAR life, 12, 77–83, https://doi.org/10.14283/jarlife.2023.13. DOI: https://doi.org/10.14283/jarlife.2023.13
Gao, X., Cassidy, A., Schwarzschild, M. A., Rimm, E. B., & Ascherio, A. (2012). Habitual intake of dietary flavonoids and risk of Parkinson disease. Neurology, 78(15), 1138–1145, https://doi.org/10.1212/WNL.0b013e31824f7fc4. DOI: https://doi.org/10.1212/WNL.0b013e31824f7fc4
Geil, C. R., Hayes, D. M., McClain, J. A., Liput, D. J., Marshall, S. A., Chen, K. Y., & Nixon, K. (2014). Alcohol and adult hippocampal neurogenesis: promiscuous drug, wanton effects. Progress in neuro-psychopharmacology & biological psychiatry, 54, 103–113, https://doi.org/10.1016/j.pnpbp.2014.05.003. DOI: https://doi.org/10.1016/j.pnpbp.2014.05.003
Golovinskaia, O., & Wang, C. K. (2021). Review of Functional and Pharmacological Activities of Berries. Molecules (Basel, Switzerland), 26(13), 3904, https://doi.org/10.3390/molecules26133904. DOI: https://doi.org/10.3390/molecules26133904
Gould, E., Tanapat, P., Rydel, T., & Hastings, N. (2000). Regulation of hippocampal neurogenesis in adulthood. Biological psychiatry, 48(8), 715–720, https://doi.org/10.1016/s0006-3223(00)01021-0. DOI: https://doi.org/10.1016/S0006-3223(00)01021-0
Gronbach, Manuel & Krausser, Laura & Broese, Timo & Oppermann, Christina & Kragl, Udo. (2021). Sublimation for Enrichment and Identification of Marker Compounds in Fruits. Food Analytical Methods. 14, https://doi.org/10.1007/s12161-020-01954-6. DOI: https://doi.org/10.1007/s12161-020-01954-6
Halvorsen, R. E., Elvestad, M., Molin, M., & Aune, D. (2021). Fruit and vegetable consumption and the risk of type 2 diabetes: a systematic review and dose-response meta-analysis of prospective studies. BMJ nutrition, prevention & health, 4(2), 519–531, https://doi.org/10.1136/bmjnph-2020-000218. DOI: https://doi.org/10.1136/bmjnph-2020-000218
Kempermann, G. (2019). Environmental enrichment, new neurons and the neurobiology of individuality. Nature reviews. Neuroscience, 20(4), 235–245, https://doi.org/10.1038/s41583-019-0120-x DOI: https://doi.org/10.1038/s41583-019-0120-x
Kempermann, G., Kuhn, H. G., & Gage, F. H. (1997). More hippocampal neurons in adult mice living in an enriched environment. Nature, 386(6624), 493–495, https://doi.org/10.1038/386493a0 DOI: https://doi.org/10.1038/386493a0
Lent, R. (2025). Yes, the human brain has around 86 billion neurons. Brain, 148(5), e37–e38. https://doi.org/10.1093/brain/awaf048. DOI: https://doi.org/10.1093/brain/awaf048
Liew, A. K. Y., Teo, C. H., & Soga, T. (2022). The Molecular Effects of Environmental Enrichment on Alzheimer's Disease. Molecular neurobiology, 59(12), 7095–7118, https://doi.org/10.1007/s12035-022-03016-w. DOI: https://doi.org/10.1007/s12035-022-03016-w
Lima Cordeiro, V., Pena, R., Ceballos, C., Shimoura, R., Roque, A.C. (2019). Aplicações da teoria da informação à neurociência. Revista Brasileira de Ensino de Física, 41(2), 20180197. https://doi.org/10.1590/1806-9126-RBEF-2018-0197. DOI: https://doi.org/10.1590/1806-9126-rbef-2018-0197
Liu, P. Z., & Nusslock, R. (2018). Exercise-Mediated Neurogenesis in the Hippocampus via BDNF. Frontiers in Neuroscience, 12, 52, https://doi.org/10.3389/fnins.2018.00052. DOI: https://doi.org/10.3389/fnins.2018.00052
Melgar-Locatelli, S., de Ceglia, M., Mañas-Padilla, M. C., Rodriguez-Pérez, C., Castilla-Ortega, E., Castro-Zavala, A., & Rivera, P. (2023). Nutrition and adult neurogenesis in the hippocampus: Does what you eat help you remember?. Frontiers in neuroscience, 17, 114726, https://doi.org/10.3389/fnins.2023.1147269. DOI: https://doi.org/10.3389/fnins.2023.1147269
Mousley, A., Bethlehem, R. A. I., Yeh, F. C., & Astle, D. E. (2025). Topological turning points across the human lifespan. Nature communications, 16(1), 10055, https://doi.org/10.1038/s41467-025-65974-8. DOI: https://doi.org/10.1038/s41467-025-65974-8
Muraki, I., Imamura, F., Manson, J. E., Hu, F. B., Willett, W. C., van Dam, R. M., & Sun, Q. (2013). Fruit consumption and risk of type 2 diabetes: results from three prospective longitudinal cohort studies. BMJ (Clinical research ed.), 347, f5001. https://doi.org/10.1136/bmj.f5001 DOI: https://doi.org/10.1136/bmj.f5001
Nixon, K., & Crews, F. T. (2002). Binge ethanol exposure decreases neurogenesis in adult rat hippocampus. Journal of neurochemistry, 83(5), 1087–1093, https://doi.org/10.1046/j.1471-4159.2002.01214.x. DOI: https://doi.org/10.1046/j.1471-4159.2002.01214.x
Ohlhorst, S. D., Russell, R., Bier, D., Klurfeld, D. M., Li, Z., Mein, J. R., Milner, J., Ross, A. C., Stover, P., & Konopka, E. (2013). Nutrition research to affect food and a healthy life span. The Journal of nutrition, 143(8), 1349–1354, https://doi.org/10.3945/jn.113.180638. DOI: https://doi.org/10.3945/jn.113.180638
Poulose, S. M., Bielinski, D. F., Carrihill-Knoll, K. L., Rabin, B. M., & Shukitt-Hale, B. (2014). Protective effects of blueberry- and strawberry diets on neuronal stress following exposure to (56)Fe particles. Brain research, 1593, 9–18, https://doi.org/10.1016/j.brainres.2014.10.028. DOI: https://doi.org/10.1016/j.brainres.2014.10.028
Poulose, S. M., Miller, M. G., Scott, T., & Shukitt-Hale, B. (2017). Nutritional factors affecting adult neurogenesis and cognitive function. Advances in nutrition, 8(6), 804–811, https://doi.org/10.3945/an.117.016261. DOI: https://doi.org/10.3945/an.117.016261
Samieri, C., Sun, Q., Townsend, M. K., Rimm, E. B., & Grodstein, F. (2014). Dietary flavonoid intake at midlife and healthy aging in women. The American journal of clinical nutrition, 100(6), 1489–1497, https://doi.org/10.3945/ajcn.114.085605. DOI: https://doi.org/10.3945/ajcn.114.085605
Scorza, F. A., Almeida, A. G., Fiorini, A. C., Chaddad-Neto, F., & Finsterer, J. (2024). Neurogenesis and pesticides: news of no new neurons. Arquivos de neuro-psiquiatria, 82(5), 1–5, https://doi.org/10.1055/s-0044-1786853 DOI: https://doi.org/10.1055/s-0044-1786853
Scorza, F. A., Guerra, A.deB., Cavalheiro, E. A., & Calil, H. M. (2005). Neurogenesis and depression: etiology or new illusion?]. Revista brasileira de psiquiatria, 27(3), 249–253, https://doi.org/10.1590/s1516-44462005000300017. DOI: https://doi.org/10.1590/S1516-44462005000300017
Shimoura, R., Pena, R., Kamiji, N., Lima Cordeiro, V. (2021). Modelos de redes de neurônios para o neocórtex e fenômenos emergentes observados. Revista Brasileira de Ensino de Física, 43(1), 1-12, https://doi.org/10.1590/1806-9126-rbef-2020-0452. DOI: https://doi.org/10.1590/1806-9126-rbef-2020-0452
Stull, A. J., Cassidy, A., Djousse, L., Johnson, S. A., Krikorian, R., Lampe, J. W., Mukamal, K. J., Nieman, D. C., Porter Starr, K. N., Rasmussen, H., Rimm, E. B., Stote, K. S., & Tangney, C. (2024). The state of the science on the health benefits of blueberries: a perspective. Frontiers in nutrition, 11, 1415737, https://doi.org/10.3389/fnut.2024.1415737. DOI: https://doi.org/10.3389/fnut.2024.1415737
Surget, A., & Belzung, C. (2022). Adult hippocampal neurogenesis shapes adaptation and improves stress response: a mechanistic and integrative perspective. Molecular psychiatry, 27(1), 403–421, https://doi.org/10.1038/s41380-021-01136-8. DOI: https://doi.org/10.1038/s41380-021-01136-8
Toda, T., & Gage, F. H. (2018). Review: adult neurogenesis contributes to hippocampal plasticity. Cell and tissue research, 373(3), 693–709. https://doi.org/10.1007/s00441-017-2735-4 DOI: https://doi.org/10.1007/s00441-017-2735-4
Tran, P. H. L., & Tran, T. T. D. (2021). Blueberry Supplementation in Neuronal Health and Protective Technologies for Efficient Delivery of Blueberry Anthocyanins. Biomolecules, 11(1), 102, https://doi.org/10.3390/biom11010102. DOI: https://doi.org/10.3390/biom11010102
van Praag, H., Kempermann, G., & Gage, F. H. (1999). Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus. Nature Neuroscience, 2(3), 266–270, https://doi.org/10.1038/6368. DOI: https://doi.org/10.1038/6368
Wang, Y., Zhou, L., Wang, N., Qiu, B., Yao, D., Yu, J., He, M., Li, T., Xie, Y., Yu, X., Bi, Z., Sun, X., Ji, X., Li, Z., Mo, D., & Ge, W. P. (2025). Comprehensive characterization of metabolic consumption and production by the human brain. Neuron, 113(11), 1708–1722.e5. https://doi.org/10.1016/j.neuron.2025.03.003. DOI: https://doi.org/10.1016/j.neuron.2025.03.003
Wedick, N. M., Pan, A., Cassidy, A., Rimm, E. B., Sampson, L., Rosner, B., Willett, W., Hu, F. B., Sun, Q., & van Dam, R. M. (2012). Dietary flavonoid intakes and risk of type 2 diabetes in US men and women. The American journal of clinical nutrition, 95(4), 925–933, https://doi.org/10.3945/ajcn.111.028894. DOI: https://doi.org/10.3945/ajcn.111.028894
Woolf, E. K., Terwoord, J. D., Litwin, N. S., Vazquez, A. R., Lee, S. Y., Ghanem, N., Michell, K. A., Smith, B. T., Grabos, L. E., Ketelhut, N. B., Bachman, N. P., Smith, M. E., Le Sayec, M., Rao, S., Gentile, C. L., Weir, T. L., Rodriguez-Mateos, A., Seals, D. R., Dinenno, F. A., & Johnson, S. A. (2023). Daily blueberry consumption for 12 weeks improves endothelial function in postmenopausal women with above-normal blood pressure through reductions in oxidative stress: a randomized controlled trial. Food & function, 14(6), 2621–2641, https://doi.org/10.1039/d3fo00157a. DOI: https://doi.org/10.1039/D3FO00157A