TECNOLOGIAS EMERGENTES APLICADAS À CADEIA PRODUTIVA AVÍCOLA COMO “FERRAMENTAS DE PRECISÃO”
DOI:
https://doi.org/10.56238/arev8n1-017Palavras-chave:
Avicultura Inteligente, Agricultura de Precisão, Tecnologias da Indústria 4.0, Tomada de Decisão em Tempo Real, Sustentabilidade na Produção AvícolaResumo
De acordo com o Relatório Anual de 2024 da Associação Brasileira de Proteína Animal (ABPA), o Brasil produziu 52,4 bilhões de ovos em 2023, sendo 99% destinados ao mercado interno e 1% exportado. Essa escala de produção exige que as operações avícolas integrem metodologias avançadas baseadas em dados para otimizar o desempenho e atender às crescentes expectativas dos consumidores. Como referência global, o setor avícola brasileiro deve adotar tecnologias inovadoras adaptadas às condições locais, garantindo a qualidade do produto e mantendo a vantagem competitiva. A gestão estratégica agora exige a tomada de decisões em tempo real, apoiada por plataformas digitais e tecnologias da Indústria 4.0, com ênfase em bem-estar animal, sustentabilidade ambiental e responsabilidade social corporativa. A rápida evolução dos sistemas de Internet das Coisas (IoT) e das infraestruturas baseadas em nuvem sustenta o surgimento da agricultura inteligente. Essas tecnologias permitem a implantação de modelos matemáticos sofisticados e algoritmos em tempo real para análise preditiva e otimização operacional. Os resultados da pesquisa destacam a aplicabilidade de tecnologias de precisão emergentes em toda a cadeia produtiva avícola. Essas ferramentas aprimoram as capacidades analíticas e apoiam a tomada de decisões gerenciais, superando estruturas anteriores, como a Avicultura Inteligente. Ao otimizar processos, reduzir custos operacionais e gerar novas oportunidades de negócios, a transformação digital reforça a competitividade setorial e se alinha aos objetivos estratégicos, ambientais e de governança social.
Downloads
Referências
Associação Brasileira de Proteína Animal. (2024). Relatório anual 2024. https://abpa-br.org/wp-content/uploads/2024/04/ABPA-Relatorio-Anual-2024_capa_frango.pdf
Aerts, J. M., Berckmans, D., Saevels, P., Decuypere, E., & Buyse, J. (2000). Modelling the static and dynamic responses of total heat production of broiler chickens to step changes in air temperature and light intensity. British Poultry Science, 41(5), 651–659. https://doi.org/10.1080/713654981 DOI: https://doi.org/10.1080/713654981
Aerts, J. M., Wathes, C. M., & Berckmans, D. (2003). Dynamic data-based modelling of heat production and growth of broiler chickens: Development of an integrated management system. Biosystems Engineering, 84(3), 257–266. https://doi.org/10.1016/S1537-5110(02)00285-4 DOI: https://doi.org/10.1016/S1537-5110(02)00285-4
Black, J. L. (2014). Brief history and future of animal simulation models for science and application. Animal Production Science, 54(12), 1883–1895. https://doi.org/10.1071/AN14650 DOI: https://doi.org/10.1071/AN14650
Banhazi, T. M., Thuy, H., Pedersen, S., Payne, H., Mullan, B., Berckmans, D., et al. (2009). Review of the consequences and control of high air temperatures in intensive livestock buildings. Australian Journal of Multi-disciplinary Engineering, 7(1), 63–78. https://doi.org/10.1080/14488388.2009.11464800 DOI: https://doi.org/10.1080/14488388.2009.11464800
Banhazi, T. M., & Black, J. L. (2009). Precision livestock farming: A suite of electronic systems to ensure the application of best practice management on livestock farms. Australian Journal of Multi-disciplinary Engineering, 7(1), 1–14. https://doi.org/10.1080/14488388.2009.11464794 DOI: https://doi.org/10.1080/14488388.2009.11464794
Bridges, T. C., & Gates, R. S. (2009). Modeling of animal bioenergetics for environmental management applications. In J. A. DeShazer (Ed.), Livestock energetics and thermal environmental management (pp. 151–179). American Society of Agricultural and Biological Engineers. DOI: https://doi.org/10.13031/2013.28300
Brown-Brandl, T. M. (2013). Managing thermal stress in feedlot cattle: Environment, animal susceptibility and management options from a US perspective. In A. Aland & T. M. Banhazi (Eds.), Livestock housing: Modern management to ensure optimal health and welfare of farm animals (pp. 189–208). Wageningen Academic Publishers. https://doi.org/10.3920/978-90-8686-771-4 DOI: https://doi.org/10.3920/978-90-8686-771-4_10
Brown-Brandl, T. M., Eigenberg, R. A., & Nienaber, J. A. (2000). Non-contact activity monitoring system for individually penned animals [Paper presentation]. ASAE Annual International Meeting, Milwaukee, WI, United States.
Cisco. (2011). Internet of Things. https://www.slideshare.net/CiscoIBSG/internet-of-things-8470978
Companhia Nacional de Abastecimento. (2023). Produção de carne de frango pode chegar a 16 milhões de toneladas em 2024 e atingir novo recorde. https://www.conab.gov.br/ultimas-noticias/5174-producao-de-carne-frango-pode-chegar-a-16-milhoes-de-toneladas-em-2024-e-atingir-novo-recorde
Connolly, A. (2017). Flocking to digital: Re-imagining the future of poultry through innovation. https://www.linkedin.com/pulse/how-technology-transforming-poultry-industry-aidan-connolly-7k-
Csótó, M. (2010). Information flow in agriculture—Through new channels for improved effectiveness. Journal of Agricultural Informatics, 1(2), 25–34. DOI: https://doi.org/10.17700/jai.2010.1.2.17
Eigenberg, R. A., Bucklin, R. A., & Brown-Brandl, T. M. (2009). Instrumentation for research and management in animal agriculture. In J. A. DeShazer (Ed.), Livestock energetics and thermal environmental management (pp. 131–149). American Society of Agricultural and Biological Engineers. DOI: https://doi.org/10.13031/2013.28299
Fountas, S., Carli, G., Sørensen, C., Tsiropoulos, Z., Cavalaris, C., Vatsanidou, A., Liakos, B., Canavari, M., Wiebensohn, J., Pivoto, D., Waquil, P. D., Talamini, E., Finocchio, C. P. S., Dalla Corte, V. F., & Mores, G. V. (2018). Scientific development of smart farming technologies and their application in Brazil. Information Processing in Agriculture, 5, 21–32. https://doi.org/10.1016/j.inpa.2017.12.002 DOI: https://doi.org/10.1016/j.inpa.2017.12.002
Fournel, S., Rousseau, A. N., & Laberge, B. (2017). Rethinking environment control strategy of confined animal housing systems through precision livestock farming. Biosystems Engineering, 155, 96–123. https://doi.org/10.1016/j.biosystemseng.2016.12.005 DOI: https://doi.org/10.1016/j.biosystemseng.2016.12.005
Frost, J. R., Schofield, C. P., Beaulah, S. A., Mottram, T. T., Lines, J. A., & Wathes, C. M. (1997). A review of livestock monitoring and the need for integrated systems. Computers and Electronics in Agriculture, 17, 139–159. https://doi.org/10.1016/S0168-1699(96)01301-4 DOI: https://doi.org/10.1016/S0168-1699(96)01301-4
Green, D. M., & Parsons, D. J. (2006). The place of models in the new technologies of production systems. In R. Gous, T. Morris, & C. Fisher (Eds.), Mechanistic modelling in pig and poultry production (pp. 305–324). CAB International. https://doi.org/10.1079/9781845930707.0305 DOI: https://doi.org/10.1079/9781845930707.0305
Hashem, I. A. T., Yaqoob, I., Anuar, N. B., Mokhtar, S., Gani, A., & Khan, S. U. (2015). The rise of big data on cloud computing: Review and open research issues. Information Systems, 47, 98–115. DOI: https://doi.org/10.1016/j.is.2014.07.006
Jackman, P. (2016). Big data in poultry process control and traceability. University College Dublin.
Kaloxylos, A., Eigenmann, R., Teye, F., Politopoulou, Z., Wolfert, S., Shrank, C., & Pesonen, L. (2012). Farm management systems and the future internet era. Computers and Electronics in Agriculture, 89, 130–144. DOI: https://doi.org/10.1016/j.compag.2012.09.002
Kashiha, M. A., Bahr, C., Haredasht, S. A., Ott, S., Moons, C. P. H., Niewold, T. A., et al. (2013). The automatic monitoring of pigs water use by cameras. Computers and Electronics in Agriculture, 90, 164–169. https://doi.org/10.1016/j.compag.2012.09.015 DOI: https://doi.org/10.1016/j.compag.2012.09.015
Koenders, E., Rooijakkers, L., Van Hertem, T., Vranken, E., & Berckmans, D. (2015). Towards the development of a practical visualisation tool for farmers and other stakeholders [Paper presentation]. 7th European Conference on Precision Livestock Farming, Milano, Italy.
Kovács, L., Jurkovich, V., Bakony, M., Szenci, O., Póti, P., & Tőzsér, J. (2014). Welfare implication of measuring heart rate and heart rate variability in dairy cattle: Literature review and conclusions for future research. Animal, 8(2), 316–330. https://doi.org/10.1017/S1751731113002140 DOI: https://doi.org/10.1017/S1751731113002140
Lacerda, F., & Lima-Marques, M. (2015). Da necessidade de princípios de Arquitetura da Informação para a Internet das Coisas. Perspectivas em Ciência da Informação, 20(2), 158–171. DOI: https://doi.org/10.1590/1981-5344/2356
Lefcourt, A. M., Erez, B., Varner, M., Barfield, R., & Tasch, U. (1999). A noninvasive radiotelemetry system to monitor heart rate for assessing stress responses of bovines. Journal of Dairy Science, 82, 1179–1187. https://doi.org/10.3168/jds.S0022-0302(99)75341-5 DOI: https://doi.org/10.3168/jds.S0022-0302(99)75341-5
Li, Z., Luo, C., Teng, G., & Liu, T. (2014). Estimation of pig weight by machine vision: A review. In A. J. Turner (Ed.), Computer and computing technologies in agriculture (Vol. 420, pp. 42–49). DOI: https://doi.org/10.1007/978-3-642-54341-8_5
Lin, T., Shah, S. B., Wang-Li, L., Oviedo-Rondón, E. O., & Post, J. (2016). Development of MOS sensor-based NH3 monitor for use in poultry houses. Computers and Electronics in Agriculture, 127, 708–715. https://doi.org/10.1016/j.compag.2016.07.033 DOI: https://doi.org/10.1016/j.compag.2016.07.033
Meiszberg, A. M., Johnson, A. K., Sadler, L. J., Carroll, J. A., Dailey, J. W., & Krebs, N. (2009). Drinking behavior in nursery pigs: Determining the accuracy between an automatic water meter versus human observers. Journal of Animal Science, 87(12), 4173–4180. https://doi.org/10.2527/jas.2008-1737 DOI: https://doi.org/10.2527/jas.2008-1737
Microsoft. (2018). O que é computação em nuvem? Microsoft Azure. https://azure.microsoft.com/pt-br/overview/what-is-cloud-computing/
Ministério da Agricultura e Pecuária. (2024). Ministério da Agricultura e Pecuária destaca vocação brasileira na exportação de carne de frango. https://www.gov.br/secom/pt-br/assuntos/noticias/2024/05/ministerio-da-agricultura-e-pecuaria-destaca-vocacao-brasileira-na-exportacao-de-carne-de-frango
Mitchell, M. A. (2013). Thermal imaging: Thermoregulation in relation to animal production and welfare. In F. Luzi, M. A. Mitchell, L. N. Costa, & V. Redaelli (Eds.), Thermography: Current status and advances in livestock animals and in veterinary medicine (pp. 147–162). Fondazione Iniziative Zooprofilattiche e Zootecniche.
Nääs, I. A. (2018). Nova avicultura 4.0. Revista Ave World, (90), 36–41. https://pdf.magtab.com/reader/revista-aveworld/18557#page/36
O’Grady, M. J., & O’Hare, G. M. P. (2017). Modelling the smart farm. Information Processing in Agriculture, 4, 179–187. https://doi.org/10.1016/j.inpa.2017.05.001 DOI: https://doi.org/10.1016/j.inpa.2017.05.001
Ouellet, V., Vasseur, E., Heuwieser, W., Burfeind, O., Maldague, X., & Charbonneau, E. (2016). Evaluation of calving indicators measured by automated monitoring devices to predict the onset of calving in Holstein dairy cows. Journal of Dairy Science, 99(2), 1539–1548. https://doi.org/10.3168/jds.2015-10057 DOI: https://doi.org/10.3168/jds.2015-10057
Patrício, I. S., Mendes, A. A., Ramos, A. A., & Pereira, D. F. (2012). Overview on the performance of Brazilian broilers (1990 to 2009). Brazilian Journal of Poultry Science, 14, 233–238. DOI: https://doi.org/10.1590/S1516-635X2012000400001
Progressive Automations. (2014). Actuators in agriculture. https://www.actuatorzone.com/blog/agriculture/linear-actuators-agriculture/
Puma, M. C., Xin, H., Gates, R. S., & Burnham, D. J. (2001). An instrumentation system for studying feeding and drinking behavior of individual poultry. Applied Engineering in Agriculture, 17(3), 365–374. DOI: https://doi.org/10.13031/2013.6211
Renaudeau, D., Kerdoncuff, M., Anais, C., & Gourdine, J. L. (2008). Effect of temperature level on thermal acclimation in Large White growing pigs. Animal, 2, 1619–1626. https://doi.org/10.1017/S1751731108002814 DOI: https://doi.org/10.1017/S1751731108002814
Sejian, V., Hyder, I., Malik, P. K., Soren, N. M., Mech, A., Mishra, A., et al. (2015). Strategies for alleviating abiotic stress in livestock. In P. K. Malik, R. Bhatta, J. Takahashi, R. A. Kohn, & C. S. Prasad (Eds.), Livestock production and climate change (pp. 25–60). CAB International. https://doi.org/10.1079/9781780644325.0025 DOI: https://doi.org/10.1079/9781780644325.0025
Sellier, N., Guettier, E., & Staub, C. (2014). A review of methods to measure animal body temperature in precision farming. American Journal of Agricultural Science and Technology, 2(2), 74–99. DOI: https://doi.org/10.7726/ajast.2014.1008
Sørensen, C., Fountas, S., Nash, E., Pesonen, L., Bochtis, D., Pedersen, S. M., & Blackmore, S. (2010). Conceptual model of a future farm management information system. Computers and Electronics in Agriculture, 72, 37–47. DOI: https://doi.org/10.1016/j.compag.2010.02.003
Tisserye, B. (2015). Farm management information systems: Current situation and future perspectives. Computers and Electronics in Agriculture, 115, 40–50. DOI: https://doi.org/10.1016/j.compag.2015.05.011
United States Department of Agriculture, Foreign Agricultural Service. (2025). Poultry and products semi-annual report. https://apps.fas.usda.gov/newgainapi/api/Report/DownloadReportByFileName?fileName=Poultry%20and%20Products%20Semi-annual_Brasilia_Brazil_BR2025-0005.pdf
United States Department of Agriculture, Foreign Agricultural Service. (2024). Poultry and products semi-annual report. https://apps.fas.usda.gov/newgainapi/api/Report/DownloadReportByFileName?fileName=Poultry%20and%20Products%20Semi-annual_Brasilia_Brazil_BR2024-0002
United States Department of Agriculture, Foreign Agricultural Service. (n.d.). Latest forecast on file: Poultry, meat, broiler % world exports. https://apps.fas.usda.gov/psdonline/app/index.html#/app/topCountriesByCommodity#chart88
Wang, Y., Yang, W., Winter, P., & Walker, L. (2008). Walk-through weighing of pigs using machine vision and an artificial neural network. Biosystems Engineering, 100, 117–125. https://doi.org/10.1016/j.biosystemseng.2007.08.008 DOI: https://doi.org/10.1016/j.biosystemseng.2007.08.008
Wathes, C. M., Kristensen, H. H., Aerts, J. M., & Berckmans, D. (2008). Is precision livestock farming an engineer’s daydream or nightmare, an animal’s friend or foe, and a farmer’s panacea or pitfall? Computers and Electronics in Agriculture, 64(1), 2–10. DOI: https://doi.org/10.1016/j.compag.2008.05.005
Yanagi, T., Xin, H., & Gates, R. S. (2002). A research facility for studying poultry responses to heat stress and its relief. Applied Engineering in Agriculture, 18(2), 255–260. DOI: https://doi.org/10.13031/2013.7787