TECNOLOGÍAS EMERGENTES APLICADAS A LA CADENA PRODUCTIVA AVÍCOLA COMO “HERRAMIENTAS DE PRECISIÓN”

Autores/as

  • Mario Mollo Neto Autor/a

DOI:

https://doi.org/10.56238/arev8n1-017

Palabras clave:

Avicultura Inteligente, Agricultura de Precisión, Tecnologías de la Industria 4.0, Tecnologías de la Industria 4.0Sostenibilidad en la Producción Avícola

Resumen

Según el Informe Anual 2024 de la Asociación Brasileña de Proteína Animal (ABPA), Brasil produjo 52.400 millones de huevos en 2023, de los cuales el 99% se destinó al mercado interno y el 1% se exportó. Esta escala de producción exige que las operaciones avícolas integren metodologías avanzadas basadas en datos para optimizar el rendimiento y satisfacer las crecientes expectativas de los consumidores. Como referente mundial, el sector avícola brasileño debe adoptar tecnologías innovadoras adaptadas a las condiciones locales, garantizando la calidad del producto y manteniendo una ventaja competitiva. La gestión estratégica exige ahora una toma de decisiones en tiempo real, respaldada por plataformas digitales y tecnologías de la Industria 4.0, con énfasis en el bienestar animal, la sostenibilidad ambiental y la responsabilidad social corporativa. La rápida evolución de los sistemas del Internet de las Cosas (IoT) y las infraestructuras basadas en la nube impulsa el surgimiento de la agricultura inteligente. Estas tecnologías permiten la implementación de sofisticados modelos matemáticos y algoritmos en tiempo real para el análisis predictivo y la optimización operativa. Los resultados de la investigación destacan la aplicabilidad de las tecnologías de precisión emergentes en toda la cadena de producción avícola. Estas herramientas mejoran las capacidades analíticas y apoyan la toma de decisiones gerenciales, superando estructuras anteriores, como la Avicultura Inteligente. Al optimizar procesos, reducir costos operativos y generar nuevas oportunidades de negocio, la transformación digital fortalece la competitividad del sector y se alinea con los objetivos estratégicos, ambientales y de gobernanza social.

Descargas

Los datos de descarga aún no están disponibles.

Referencias

Associação Brasileira de Proteína Animal. (2024). Relatório anual 2024. https://abpa-br.org/wp-content/uploads/2024/04/ABPA-Relatorio-Anual-2024_capa_frango.pdf

Aerts, J. M., Berckmans, D., Saevels, P., Decuypere, E., & Buyse, J. (2000). Modelling the static and dynamic responses of total heat production of broiler chickens to step changes in air temperature and light intensity. British Poultry Science, 41(5), 651–659. https://doi.org/10.1080/713654981 DOI: https://doi.org/10.1080/713654981

Aerts, J. M., Wathes, C. M., & Berckmans, D. (2003). Dynamic data-based modelling of heat production and growth of broiler chickens: Development of an integrated management system. Biosystems Engineering, 84(3), 257–266. https://doi.org/10.1016/S1537-5110(02)00285-4 DOI: https://doi.org/10.1016/S1537-5110(02)00285-4

Black, J. L. (2014). Brief history and future of animal simulation models for science and application. Animal Production Science, 54(12), 1883–1895. https://doi.org/10.1071/AN14650 DOI: https://doi.org/10.1071/AN14650

Banhazi, T. M., Thuy, H., Pedersen, S., Payne, H., Mullan, B., Berckmans, D., et al. (2009). Review of the consequences and control of high air temperatures in intensive livestock buildings. Australian Journal of Multi-disciplinary Engineering, 7(1), 63–78. https://doi.org/10.1080/14488388.2009.11464800 DOI: https://doi.org/10.1080/14488388.2009.11464800

Banhazi, T. M., & Black, J. L. (2009). Precision livestock farming: A suite of electronic systems to ensure the application of best practice management on livestock farms. Australian Journal of Multi-disciplinary Engineering, 7(1), 1–14. https://doi.org/10.1080/14488388.2009.11464794 DOI: https://doi.org/10.1080/14488388.2009.11464794

Bridges, T. C., & Gates, R. S. (2009). Modeling of animal bioenergetics for environmental management applications. In J. A. DeShazer (Ed.), Livestock energetics and thermal environmental management (pp. 151–179). American Society of Agricultural and Biological Engineers. DOI: https://doi.org/10.13031/2013.28300

Brown-Brandl, T. M. (2013). Managing thermal stress in feedlot cattle: Environment, animal susceptibility and management options from a US perspective. In A. Aland & T. M. Banhazi (Eds.), Livestock housing: Modern management to ensure optimal health and welfare of farm animals (pp. 189–208). Wageningen Academic Publishers. https://doi.org/10.3920/978-90-8686-771-4 DOI: https://doi.org/10.3920/978-90-8686-771-4_10

Brown-Brandl, T. M., Eigenberg, R. A., & Nienaber, J. A. (2000). Non-contact activity monitoring system for individually penned animals [Paper presentation]. ASAE Annual International Meeting, Milwaukee, WI, United States.

Cisco. (2011). Internet of Things. https://www.slideshare.net/CiscoIBSG/internet-of-things-8470978

Companhia Nacional de Abastecimento. (2023). Produção de carne de frango pode chegar a 16 milhões de toneladas em 2024 e atingir novo recorde. https://www.conab.gov.br/ultimas-noticias/5174-producao-de-carne-frango-pode-chegar-a-16-milhoes-de-toneladas-em-2024-e-atingir-novo-recorde

Connolly, A. (2017). Flocking to digital: Re-imagining the future of poultry through innovation. https://www.linkedin.com/pulse/how-technology-transforming-poultry-industry-aidan-connolly-7k-

Csótó, M. (2010). Information flow in agriculture—Through new channels for improved effectiveness. Journal of Agricultural Informatics, 1(2), 25–34. DOI: https://doi.org/10.17700/jai.2010.1.2.17

Eigenberg, R. A., Bucklin, R. A., & Brown-Brandl, T. M. (2009). Instrumentation for research and management in animal agriculture. In J. A. DeShazer (Ed.), Livestock energetics and thermal environmental management (pp. 131–149). American Society of Agricultural and Biological Engineers. DOI: https://doi.org/10.13031/2013.28299

Fountas, S., Carli, G., Sørensen, C., Tsiropoulos, Z., Cavalaris, C., Vatsanidou, A., Liakos, B., Canavari, M., Wiebensohn, J., Pivoto, D., Waquil, P. D., Talamini, E., Finocchio, C. P. S., Dalla Corte, V. F., & Mores, G. V. (2018). Scientific development of smart farming technologies and their application in Brazil. Information Processing in Agriculture, 5, 21–32. https://doi.org/10.1016/j.inpa.2017.12.002 DOI: https://doi.org/10.1016/j.inpa.2017.12.002

Fournel, S., Rousseau, A. N., & Laberge, B. (2017). Rethinking environment control strategy of confined animal housing systems through precision livestock farming. Biosystems Engineering, 155, 96–123. https://doi.org/10.1016/j.biosystemseng.2016.12.005 DOI: https://doi.org/10.1016/j.biosystemseng.2016.12.005

Frost, J. R., Schofield, C. P., Beaulah, S. A., Mottram, T. T., Lines, J. A., & Wathes, C. M. (1997). A review of livestock monitoring and the need for integrated systems. Computers and Electronics in Agriculture, 17, 139–159. https://doi.org/10.1016/S0168-1699(96)01301-4 DOI: https://doi.org/10.1016/S0168-1699(96)01301-4

Green, D. M., & Parsons, D. J. (2006). The place of models in the new technologies of production systems. In R. Gous, T. Morris, & C. Fisher (Eds.), Mechanistic modelling in pig and poultry production (pp. 305–324). CAB International. https://doi.org/10.1079/9781845930707.0305 DOI: https://doi.org/10.1079/9781845930707.0305

Hashem, I. A. T., Yaqoob, I., Anuar, N. B., Mokhtar, S., Gani, A., & Khan, S. U. (2015). The rise of big data on cloud computing: Review and open research issues. Information Systems, 47, 98–115. DOI: https://doi.org/10.1016/j.is.2014.07.006

Jackman, P. (2016). Big data in poultry process control and traceability. University College Dublin.

Kaloxylos, A., Eigenmann, R., Teye, F., Politopoulou, Z., Wolfert, S., Shrank, C., & Pesonen, L. (2012). Farm management systems and the future internet era. Computers and Electronics in Agriculture, 89, 130–144. DOI: https://doi.org/10.1016/j.compag.2012.09.002

Kashiha, M. A., Bahr, C., Haredasht, S. A., Ott, S., Moons, C. P. H., Niewold, T. A., et al. (2013). The automatic monitoring of pigs water use by cameras. Computers and Electronics in Agriculture, 90, 164–169. https://doi.org/10.1016/j.compag.2012.09.015 DOI: https://doi.org/10.1016/j.compag.2012.09.015

Koenders, E., Rooijakkers, L., Van Hertem, T., Vranken, E., & Berckmans, D. (2015). Towards the development of a practical visualisation tool for farmers and other stakeholders [Paper presentation]. 7th European Conference on Precision Livestock Farming, Milano, Italy.

Kovács, L., Jurkovich, V., Bakony, M., Szenci, O., Póti, P., & Tőzsér, J. (2014). Welfare implication of measuring heart rate and heart rate variability in dairy cattle: Literature review and conclusions for future research. Animal, 8(2), 316–330. https://doi.org/10.1017/S1751731113002140 DOI: https://doi.org/10.1017/S1751731113002140

Lacerda, F., & Lima-Marques, M. (2015). Da necessidade de princípios de Arquitetura da Informação para a Internet das Coisas. Perspectivas em Ciência da Informação, 20(2), 158–171. DOI: https://doi.org/10.1590/1981-5344/2356

Lefcourt, A. M., Erez, B., Varner, M., Barfield, R., & Tasch, U. (1999). A noninvasive radiotelemetry system to monitor heart rate for assessing stress responses of bovines. Journal of Dairy Science, 82, 1179–1187. https://doi.org/10.3168/jds.S0022-0302(99)75341-5 DOI: https://doi.org/10.3168/jds.S0022-0302(99)75341-5

Li, Z., Luo, C., Teng, G., & Liu, T. (2014). Estimation of pig weight by machine vision: A review. In A. J. Turner (Ed.), Computer and computing technologies in agriculture (Vol. 420, pp. 42–49). DOI: https://doi.org/10.1007/978-3-642-54341-8_5

Lin, T., Shah, S. B., Wang-Li, L., Oviedo-Rondón, E. O., & Post, J. (2016). Development of MOS sensor-based NH3 monitor for use in poultry houses. Computers and Electronics in Agriculture, 127, 708–715. https://doi.org/10.1016/j.compag.2016.07.033 DOI: https://doi.org/10.1016/j.compag.2016.07.033

Meiszberg, A. M., Johnson, A. K., Sadler, L. J., Carroll, J. A., Dailey, J. W., & Krebs, N. (2009). Drinking behavior in nursery pigs: Determining the accuracy between an automatic water meter versus human observers. Journal of Animal Science, 87(12), 4173–4180. https://doi.org/10.2527/jas.2008-1737 DOI: https://doi.org/10.2527/jas.2008-1737

Microsoft. (2018). O que é computação em nuvem? Microsoft Azure. https://azure.microsoft.com/pt-br/overview/what-is-cloud-computing/

Ministério da Agricultura e Pecuária. (2024). Ministério da Agricultura e Pecuária destaca vocação brasileira na exportação de carne de frango. https://www.gov.br/secom/pt-br/assuntos/noticias/2024/05/ministerio-da-agricultura-e-pecuaria-destaca-vocacao-brasileira-na-exportacao-de-carne-de-frango

Mitchell, M. A. (2013). Thermal imaging: Thermoregulation in relation to animal production and welfare. In F. Luzi, M. A. Mitchell, L. N. Costa, & V. Redaelli (Eds.), Thermography: Current status and advances in livestock animals and in veterinary medicine (pp. 147–162). Fondazione Iniziative Zooprofilattiche e Zootecniche.

Nääs, I. A. (2018). Nova avicultura 4.0. Revista Ave World, (90), 36–41. https://pdf.magtab.com/reader/revista-aveworld/18557#page/36

O’Grady, M. J., & O’Hare, G. M. P. (2017). Modelling the smart farm. Information Processing in Agriculture, 4, 179–187. https://doi.org/10.1016/j.inpa.2017.05.001 DOI: https://doi.org/10.1016/j.inpa.2017.05.001

Ouellet, V., Vasseur, E., Heuwieser, W., Burfeind, O., Maldague, X., & Charbonneau, E. (2016). Evaluation of calving indicators measured by automated monitoring devices to predict the onset of calving in Holstein dairy cows. Journal of Dairy Science, 99(2), 1539–1548. https://doi.org/10.3168/jds.2015-10057 DOI: https://doi.org/10.3168/jds.2015-10057

Patrício, I. S., Mendes, A. A., Ramos, A. A., & Pereira, D. F. (2012). Overview on the performance of Brazilian broilers (1990 to 2009). Brazilian Journal of Poultry Science, 14, 233–238. DOI: https://doi.org/10.1590/S1516-635X2012000400001

Progressive Automations. (2014). Actuators in agriculture. https://www.actuatorzone.com/blog/agriculture/linear-actuators-agriculture/

Puma, M. C., Xin, H., Gates, R. S., & Burnham, D. J. (2001). An instrumentation system for studying feeding and drinking behavior of individual poultry. Applied Engineering in Agriculture, 17(3), 365–374. DOI: https://doi.org/10.13031/2013.6211

Renaudeau, D., Kerdoncuff, M., Anais, C., & Gourdine, J. L. (2008). Effect of temperature level on thermal acclimation in Large White growing pigs. Animal, 2, 1619–1626. https://doi.org/10.1017/S1751731108002814 DOI: https://doi.org/10.1017/S1751731108002814

Sejian, V., Hyder, I., Malik, P. K., Soren, N. M., Mech, A., Mishra, A., et al. (2015). Strategies for alleviating abiotic stress in livestock. In P. K. Malik, R. Bhatta, J. Takahashi, R. A. Kohn, & C. S. Prasad (Eds.), Livestock production and climate change (pp. 25–60). CAB International. https://doi.org/10.1079/9781780644325.0025 DOI: https://doi.org/10.1079/9781780644325.0025

Sellier, N., Guettier, E., & Staub, C. (2014). A review of methods to measure animal body temperature in precision farming. American Journal of Agricultural Science and Technology, 2(2), 74–99. DOI: https://doi.org/10.7726/ajast.2014.1008

Sørensen, C., Fountas, S., Nash, E., Pesonen, L., Bochtis, D., Pedersen, S. M., & Blackmore, S. (2010). Conceptual model of a future farm management information system. Computers and Electronics in Agriculture, 72, 37–47. DOI: https://doi.org/10.1016/j.compag.2010.02.003

Tisserye, B. (2015). Farm management information systems: Current situation and future perspectives. Computers and Electronics in Agriculture, 115, 40–50. DOI: https://doi.org/10.1016/j.compag.2015.05.011

United States Department of Agriculture, Foreign Agricultural Service. (2025). Poultry and products semi-annual report. https://apps.fas.usda.gov/newgainapi/api/Report/DownloadReportByFileName?fileName=Poultry%20and%20Products%20Semi-annual_Brasilia_Brazil_BR2025-0005.pdf

United States Department of Agriculture, Foreign Agricultural Service. (2024). Poultry and products semi-annual report. https://apps.fas.usda.gov/newgainapi/api/Report/DownloadReportByFileName?fileName=Poultry%20and%20Products%20Semi-annual_Brasilia_Brazil_BR2024-0002

United States Department of Agriculture, Foreign Agricultural Service. (n.d.). Latest forecast on file: Poultry, meat, broiler % world exports. https://apps.fas.usda.gov/psdonline/app/index.html#/app/topCountriesByCommodity#chart88

Wang, Y., Yang, W., Winter, P., & Walker, L. (2008). Walk-through weighing of pigs using machine vision and an artificial neural network. Biosystems Engineering, 100, 117–125. https://doi.org/10.1016/j.biosystemseng.2007.08.008 DOI: https://doi.org/10.1016/j.biosystemseng.2007.08.008

Wathes, C. M., Kristensen, H. H., Aerts, J. M., & Berckmans, D. (2008). Is precision livestock farming an engineer’s daydream or nightmare, an animal’s friend or foe, and a farmer’s panacea or pitfall? Computers and Electronics in Agriculture, 64(1), 2–10. DOI: https://doi.org/10.1016/j.compag.2008.05.005

Yanagi, T., Xin, H., & Gates, R. S. (2002). A research facility for studying poultry responses to heat stress and its relief. Applied Engineering in Agriculture, 18(2), 255–260. DOI: https://doi.org/10.13031/2013.7787

Descargas

Publicado

2026-01-05

Número

Sección

Artigos

Cómo citar

MOLLO NETO, Mario. TECNOLOGÍAS EMERGENTES APLICADAS A LA CADENA PRODUCTIVA AVÍCOLA COMO “HERRAMIENTAS DE PRECISIÓN”. ARACÊ , [S. l.], v. 8, n. 1, p. e11621, 2026. DOI: 10.56238/arev8n1-017. Disponível em: https://periodicos.newsciencepubl.com/arace/article/view/11621. Acesso em: 8 jan. 2026.