DINÁMICA FISICOQUÍMICA EN SISTEMAS DE BIOFLOC EN LA AMAZONÍA: UN ENFOQUE MULTIVARIADO APLICADO AL CULTIVO DE CAMARONES
DOI:
https://doi.org/10.56238/arev7n11-022Palabras clave:
Biofloc, Calidad del Agua, Amazonía, Litopenaeus vannamei, Análisis Multivariado, Cultivo de CamaronesResumen
La intensificación de la camaronicultura en la Amazonía ha impulsado la adopción de sistemas sostenibles, como la tecnología de biofloc (BFT), para optimizar la calidad del agua y reducir la renovación hídrica. Sin embargo, las variaciones en los parámetros fisicoquímicos —como la salinidad, la conductividad y el oxígeno disuelto— siguen siendo desafíos significativos para los productores locales. Este estudio tuvo como objetivo monitorear y analizar la dinámica temporal de estos parámetros durante 24 días de cultivo experimental de Litopenaeus vannamei en un sistema BFT, utilizando agua y camarones provenientes de un criadero comercial de la costa paraense. Se aplicaron estadísticas descriptivas y análisis multivariados, incluidos el Análisis de Componentes Principales (PCA) y el Agrupamiento Jerárquico (HCA), para identificar patrones de variación y variables críticas de manejo. Los resultados mostraron estabilidad térmica, pH tamponado y niveles adecuados de oxígeno disuelto, mientras que la conductividad, la salinidad y los sólidos disueltos totales presentaron una tendencia creciente, asociada con la maduración del sistema. El PCA evidenció la correlación entre estas variables como principales responsables de la varianza total, y el HCA reveló tres fases distintas en el ciclo productivo, representando etapas de desarrollo del biofloc. Se concluye que la aplicación de herramientas multivariadas junto con el monitoreo continuo de la calidad del agua permite comprender la evolución fisicoquímica del sistema, proporcionando información clave para el manejo sostenible de la camaronicultura en condiciones amazónicas.
Descargas
Referencias
ABAKARI, Godwin; LUO, Guozhi; KOMBAT, Emmanuel O. Dynamics of nitrogenous compounds and their control in biofloc technology (BFT) systems: A review. Aquaculture and Fisheries, v. 6, n. 5, p. 441-447, 2021. Disponível em: https://www.sciencedirect.com/science/article/pii/S2468550X20300630. Acesso em: 28 de outubro de 2025. DOI: https://doi.org/10.1016/j.aaf.2020.05.005
ABO-TALEB, Mohammed AA; GOBRAN, Safwat; SOLIMAN, Mostafa AM. Dynamics of pH and Its Regulation in The Bio-FLOC Technology (BFT) System: A Review. 2024. Diponível em: https://www.researchgate.net/publication/387099627_Dynamics_of_pH_and_Its_Regulation_in_The_Bio-FLOC_Technology_BFT_System_A_Review. Acesso em: 28 de outubro de 2025.
AL-SAYEGH, Shaikha Y. et al. Maturation of the biofloc system in Penaeus vannamei culture under different salinities and its effects on the microbial communities. Aquaculture Reports, v. 40, p. 102568, 2025. Dispoível em: https://www.sciencedirect.com/science/article/pii/S2352513424006562. Acesso em: 03 de setembro de 2025. DOI: https://doi.org/10.1016/j.aqrep.2024.102568
AMJAD, Khalid et al. Impact of alkalinity treatments on biofloc dynamics and growth performance in Penaeus vannamei shrimp culture. Aquaculture Reports, v. 42, p. 102797, 2025. DOI: https://doi.org/10.1016/j.aqrep.2025.102797
AVNIMELECH, Y. Biofloc Technology: A Practical Guide Book. 3. ed. Baton Rouge: The World Aquaculture Society, 2009. Disponível em: https://www.researchgate.net/publication/308052605_Biofloc_technology_A_practical_guide_book_The_World_Aquaculture_Society. Acesso em: 27 de outubro de 2025.
BOYD, C. E.; TUCKER, C. S. Pond aquaculture water quality management. Springer, 2012.
CHO, Seo-Hyun et al. The effects of temperature on maintaining the stability of water quality in biofloc-based zero-water exchange culture tanks. Journal of Life Science, v. 25, n. 5, p. 496-506, 2015. Disponível em: https://scholar.archive.org/work/eful7mv3izd4vnlmqna3fvhpdq/access/wayback/http://www.kpubs.org/article/articleDownload.kpubs?downType=pdf&articleANo=SMGHBM_2015_v25n5_496. Acesso em: 28 de outubro de 2025. DOI: https://doi.org/10.5352/JLS.2015.25.5.496
.
CORRÊA, M. S. C.; COSTA, L C. O; CASTRO, J. S. O.; COSTA, S. R. M.; FARIAS, A. K. M. C; PAZ, B. C. C; MORAIS, E. Monitoramento Nictemeral em Bioflocos na Amazônia: Diagnóstico Comparativo da Qualidade da Água entre Períodos de Maior e Menor Precipitação. ARACÊ , [S. l.], v. 7, n. 6, p. 33394–33413, 2025. DOI: 10.56238/arev7n6-250. Disponível em: https://periodicos.newsciencepubl.com/arace/article/view/6057. Acesso em: 27 out. 2025. DOI: https://doi.org/10.56238/arev7n6-250
CRAB, R. et al. Biofloc technology in aquaculture: beneficial effects and future challenges. Aquaculture, v. 356‑357, p. 351‑356, 2012. Disponível em: https://www.comm.toronto.edu/~bkf/pessoal/2012_this_first.pdf . Acesso em: 27 de outubro de 2025. DOI: https://doi.org/10.1016/j.aquaculture.2012.04.046
EBELING, J. M.; TIMMONS, M. B.; BISOGNI, J. J. Engineering analysis of the stoichiometry of photoautotrophic, autotrophic, and heterotrophic removal of ammonia–nitrogen in aquaculture systems. Aquaculture, v. 257, p. 346‑358, 2006. Disponível em: https://www.sciencedirect.com/science/article/pii/S004484860600216X. Acesso em: 25 de setembro de 2025. DOI: https://doi.org/10.1016/j.aquaculture.2006.03.019
EL‐SAYED, Abdel‐Fattah M. Use of biofloc technology in shrimp aquaculture: a comprehensive review, with emphasis on the last decade. Reviews in Aquaculture, v. 13, n. 1, p. 676-705, 2021. DOI: https://doi.org/10.1111/raq.12494
EMERENCIANO, M. G. C.; GAXIOLA, G.; CUZON, G. Biofloc technology (BFT): a review for aquaculture application and animal food industry. Biomass Now – Cultivation and Utilization, p. 301‑328, 2017.
FAO. The State of World Fisheries and Aquaculture 2020: Sustainability in action. Roma: Food and Agriculture Organization of the United Nations, 2020.
FELIX, S.; MENAGA, M. Applied aquaculture biofloc technology. CRC Press, 2021. Disponível em: https://www.taylorfrancis.com/books/mono/10.1201/9781003242611/applied-aquaculture-biofloc-technology-felix-menaga. Acesso em: 02 de setembro de 2025. DOI: https://doi.org/10.1201/9781003242611
FURTADO, P. S.; POERSCH, L. H. S.; WASIELESKY, W. Effect of calcium hydroxide, carbonate and sodium bicarbonate on water quality and zootechnical performance of Litopenaeus vannamei reared in biofloc technology (BFT) systems. Aquacultural Engineering, v. 68, p. 39‑44, 2015. Disponível em: https://www.sciencedirect.com/science/article/abs/pii/S004484861100682X. Acesso em 23 de agosto de 2025.
HARGREAVES, J. A. Biofloc production systems for aquaculture. Southern Regional Aquaculture Center, 2013.
KHANJANI, Mohammad Hossein; MOHAMMADI, Alireza; EMERENCIANO, Maurício Gustavo Coelho. Water quality in biofloc technology (BFT): an applied review for an evolving aquaculture. Aquaculture International, v. 32, n. 7, p. 9321-9374, 2024. DOI: https://doi.org/10.1007/s10499-024-01618-w
KHANJANI, Mohammad Hossein et al. Biological Removal of Nitrogenous Waste Compounds in the Biofloc Aquaculture System–A Review. Annals of Animal Science, v. 25, n. 1, p. 3-21, 2025. DOI: https://doi.org/10.2478/aoas-2024-0060
LIN, Y. C.; CHEN, J. C. Acute toxicity of ammonia on Litopenaeus vannamei juveniles at different salinity levels. Journal of Experimental Marine Biology and Ecology, v. 259, p. 109‑119, 2003. Disponível em: https://www.sciencedirect.com/science/article/abs/pii/S0022098101002271. Acesso em 27 de setembro de 2025. DOI: https://doi.org/10.1016/S0022-0981(01)00227-1
PONCE-PALAFOX, Jesus T. et al. Response surface analysis of temperature-salinity interaction effects on water quality, growth and survival of shrimp Penaeus vannamei postlarvae raised in biofloc intensive nursery production. Aquaculture, v. 503, p. 312-321, 2019. Disponível em: https://www.sciencedirect.com/science/article/abs/pii/S0044848618322701. Acesso em 27 de outubro de 2025. DOI: https://doi.org/10.1016/j.aquaculture.2019.01.020
RAZA, Bilal; ZHENG, Zhongming; YANG, Wen. A review on biofloc system technology, history, types, and future economical perceptions in aquaculture. Animals, v. 14, n. 10, p. 1489, 2024. Disponível em: https://pmc.ncbi.nlm.nih.gov/articles/PMC11117240/. Acesso em: 28 de outubro de 2025. DOI: https://doi.org/10.3390/ani14101489
TACON, A. G. J.; FORSTER, I. P. Aquafeeds and the environment: policy implications. Aquaculture, v. 226, p. 181‑189, 2003. Disponível em: https://www.sciencedirect.com/science/article/abs/pii/S0044848603004769. Acesso em: 23 de setembro de 2025. DOI: https://doi.org/10.1016/S0044-8486(03)00476-9
TONG, Ruixue et al. Effects of feeding level and C/N ratio on water quality, growth performance, immune and antioxidant status of Litopenaeus vannamei in zero–water exchange bioflocs-based outdoor soil culture ponds. Fish & Shellfish Immunology, v. 101, p. 126-134, 2020. Disponível em: https://www.sciencedirect.com/science/article/abs/pii/S1050464820302199. Acesso em 12 de outubro de 2025. DOI: https://doi.org/10.1016/j.fsi.2020.03.051
XU, W. J.; PAN, L. Q. Effects of bioflocs on growth performance, digestive enzyme activity and body composition of juvenile Litopenaeus vannamei in zero‑water exchange tanks manipulating C/N ratio in feed. Aquaculture, v. 426‑427, p. 181‑188, 2014. Disponível em: https://www.sciencedirect.com/science/article/abs/pii/S0044848612003122. Acesso em 21 de agosto de 2025.
ZHANG, Kaiquan et al. Effect of using sodium bicarbonate to adjust the pH to different levels on water quality, the growth and the immune response of shrimp Litopenaeus vannamei reared in zero‐water exchange biofloc‐based culture tanks. Aquaculture Research, v. 48, n. 3, p. 1194-1208, 2017. DOI: https://doi.org/10.1111/are.12961
