PHYSICOCHEMICAL DYNAMICS IN BIOFLOC SYSTEMS IN THE AMAZON: A MULTIVARIATE APPROACH APPLIED TO SHRIMP FARMING

Authors

  • Alice Katrícia Mendes Carvalho de Farias Author
  • Adailton Pinto de Souza Author
  • Mizaira Sophia Cunha Corrêa Author
  • Bruna Cristina do Carmo Paz Author
  • Luana Oeiras Porfírio Author
  • Saymon Rodrigues Matos da Costa Author
  • Lian Valente Brandão Author
  • Léa Carolina de Oliveira Costa Author
  • Jeferson Stiver Oliveira de Castro Author

DOI:

https://doi.org/10.56238/arev7n11-022

Keywords:

Biofloc, Water Quality, Amazon, Litopenaeus vannamei, Multivariate Analysis, Shrimp Farming

Abstract

The intensification of shrimp farming in the Amazon has driven the adoption of sustainable systems such as biofloc technology (BFT) to optimize water quality and reduce water exchange. However, variations in physicochemical parameters—such as salinity, conductivity, and dissolved oxygen—remain significant challenges for local producers. This study aimed to monitor and analyze the temporal dynamics of these parameters during a 24-day experimental culture of Litopenaeus vannamei in a BFT system, using water and shrimp from a commercial farm on the coast of Pará, Brazil. Descriptive statistics and multivariate analyses, including Principal Component Analysis (PCA) and Hierarchical Cluster Analysis (HCA), were applied to identify variation patterns and critical management variables. The results showed stable temperature, buffered pH, and adequate dissolved oxygen levels, while conductivity, salinity, and total dissolved solids increased gradually with system maturation. PCA highlighted these variables as the main contributors to total variance, and HCA revealed three distinct phases in the production cycle, representing stages of biofloc development. It is concluded that the integration of multivariate tools with continuous water quality monitoring enhances the understanding of the system’s physicochemical evolution, providing support for sustainable shrimp farming management under Amazonian conditions.

Downloads

Download data is not yet available.

References

ABAKARI, Godwin; LUO, Guozhi; KOMBAT, Emmanuel O. Dynamics of nitrogenous compounds and their control in biofloc technology (BFT) systems: A review. Aquaculture and Fisheries, v. 6, n. 5, p. 441-447, 2021. Disponível em: https://www.sciencedirect.com/science/article/pii/S2468550X20300630. Acesso em: 28 de outubro de 2025. DOI: https://doi.org/10.1016/j.aaf.2020.05.005

ABO-TALEB, Mohammed AA; GOBRAN, Safwat; SOLIMAN, Mostafa AM. Dynamics of pH and Its Regulation in The Bio-FLOC Technology (BFT) System: A Review. 2024. Diponível em: https://www.researchgate.net/publication/387099627_Dynamics_of_pH_and_Its_Regulation_in_The_Bio-FLOC_Technology_BFT_System_A_Review. Acesso em: 28 de outubro de 2025.

AL-SAYEGH, Shaikha Y. et al. Maturation of the biofloc system in Penaeus vannamei culture under different salinities and its effects on the microbial communities. Aquaculture Reports, v. 40, p. 102568, 2025. Dispoível em: https://www.sciencedirect.com/science/article/pii/S2352513424006562. Acesso em: 03 de setembro de 2025. DOI: https://doi.org/10.1016/j.aqrep.2024.102568

AMJAD, Khalid et al. Impact of alkalinity treatments on biofloc dynamics and growth performance in Penaeus vannamei shrimp culture. Aquaculture Reports, v. 42, p. 102797, 2025. DOI: https://doi.org/10.1016/j.aqrep.2025.102797

AVNIMELECH, Y. Biofloc Technology: A Practical Guide Book. 3. ed. Baton Rouge: The World Aquaculture Society, 2009. Disponível em: https://www.researchgate.net/publication/308052605_Biofloc_technology_A_practical_guide_book_The_World_Aquaculture_Society. Acesso em: 27 de outubro de 2025.

BOYD, C. E.; TUCKER, C. S. Pond aquaculture water quality management. Springer, 2012.

CHO, Seo-Hyun et al. The effects of temperature on maintaining the stability of water quality in biofloc-based zero-water exchange culture tanks. Journal of Life Science, v. 25, n. 5, p. 496-506, 2015. Disponível em: https://scholar.archive.org/work/eful7mv3izd4vnlmqna3fvhpdq/access/wayback/http://www.kpubs.org/article/articleDownload.kpubs?downType=pdf&articleANo=SMGHBM_2015_v25n5_496. Acesso em: 28 de outubro de 2025. DOI: https://doi.org/10.5352/JLS.2015.25.5.496

.

CORRÊA, M. S. C.; COSTA, L C. O; CASTRO, J. S. O.; COSTA, S. R. M.; FARIAS, A. K. M. C; PAZ, B. C. C; MORAIS, E. Monitoramento Nictemeral em Bioflocos na Amazônia: Diagnóstico Comparativo da Qualidade da Água entre Períodos de Maior e Menor Precipitação. ARACÊ , [S. l.], v. 7, n. 6, p. 33394–33413, 2025. DOI: 10.56238/arev7n6-250. Disponível em: https://periodicos.newsciencepubl.com/arace/article/view/6057. Acesso em: 27 out. 2025. DOI: https://doi.org/10.56238/arev7n6-250

CRAB, R. et al. Biofloc technology in aquaculture: beneficial effects and future challenges. Aquaculture, v. 356‑357, p. 351‑356, 2012. Disponível em: https://www.comm.toronto.edu/~bkf/pessoal/2012_this_first.pdf . Acesso em: 27 de outubro de 2025. DOI: https://doi.org/10.1016/j.aquaculture.2012.04.046

EBELING, J. M.; TIMMONS, M. B.; BISOGNI, J. J. Engineering analysis of the stoichiometry of photoautotrophic, autotrophic, and heterotrophic removal of ammonia–nitrogen in aquaculture systems. Aquaculture, v. 257, p. 346‑358, 2006. Disponível em: https://www.sciencedirect.com/science/article/pii/S004484860600216X. Acesso em: 25 de setembro de 2025. DOI: https://doi.org/10.1016/j.aquaculture.2006.03.019

EL‐SAYED, Abdel‐Fattah M. Use of biofloc technology in shrimp aquaculture: a comprehensive review, with emphasis on the last decade. Reviews in Aquaculture, v. 13, n. 1, p. 676-705, 2021. DOI: https://doi.org/10.1111/raq.12494

EMERENCIANO, M. G. C.; GAXIOLA, G.; CUZON, G. Biofloc technology (BFT): a review for aquaculture application and animal food industry. Biomass Now – Cultivation and Utilization, p. 301‑328, 2017.

FAO. The State of World Fisheries and Aquaculture 2020: Sustainability in action. Roma: Food and Agriculture Organization of the United Nations, 2020.

FELIX, S.; MENAGA, M. Applied aquaculture biofloc technology. CRC Press, 2021. Disponível em: https://www.taylorfrancis.com/books/mono/10.1201/9781003242611/applied-aquaculture-biofloc-technology-felix-menaga. Acesso em: 02 de setembro de 2025. DOI: https://doi.org/10.1201/9781003242611

FURTADO, P. S.; POERSCH, L. H. S.; WASIELESKY, W. Effect of calcium hydroxide, carbonate and sodium bicarbonate on water quality and zootechnical performance of Litopenaeus vannamei reared in biofloc technology (BFT) systems. Aquacultural Engineering, v. 68, p. 39‑44, 2015. Disponível em: https://www.sciencedirect.com/science/article/abs/pii/S004484861100682X. Acesso em 23 de agosto de 2025.

HARGREAVES, J. A. Biofloc production systems for aquaculture. Southern Regional Aquaculture Center, 2013.

KHANJANI, Mohammad Hossein; MOHAMMADI, Alireza; EMERENCIANO, Maurício Gustavo Coelho. Water quality in biofloc technology (BFT): an applied review for an evolving aquaculture. Aquaculture International, v. 32, n. 7, p. 9321-9374, 2024. DOI: https://doi.org/10.1007/s10499-024-01618-w

KHANJANI, Mohammad Hossein et al. Biological Removal of Nitrogenous Waste Compounds in the Biofloc Aquaculture System–A Review. Annals of Animal Science, v. 25, n. 1, p. 3-21, 2025. DOI: https://doi.org/10.2478/aoas-2024-0060

LIN, Y. C.; CHEN, J. C. Acute toxicity of ammonia on Litopenaeus vannamei juveniles at different salinity levels. Journal of Experimental Marine Biology and Ecology, v. 259, p. 109‑119, 2003. Disponível em: https://www.sciencedirect.com/science/article/abs/pii/S0022098101002271. Acesso em 27 de setembro de 2025. DOI: https://doi.org/10.1016/S0022-0981(01)00227-1

PONCE-PALAFOX, Jesus T. et al. Response surface analysis of temperature-salinity interaction effects on water quality, growth and survival of shrimp Penaeus vannamei postlarvae raised in biofloc intensive nursery production. Aquaculture, v. 503, p. 312-321, 2019. Disponível em: https://www.sciencedirect.com/science/article/abs/pii/S0044848618322701. Acesso em 27 de outubro de 2025. DOI: https://doi.org/10.1016/j.aquaculture.2019.01.020

RAZA, Bilal; ZHENG, Zhongming; YANG, Wen. A review on biofloc system technology, history, types, and future economical perceptions in aquaculture. Animals, v. 14, n. 10, p. 1489, 2024. Disponível em: https://pmc.ncbi.nlm.nih.gov/articles/PMC11117240/. Acesso em: 28 de outubro de 2025. DOI: https://doi.org/10.3390/ani14101489

TACON, A. G. J.; FORSTER, I. P. Aquafeeds and the environment: policy implications. Aquaculture, v. 226, p. 181‑189, 2003. Disponível em: https://www.sciencedirect.com/science/article/abs/pii/S0044848603004769. Acesso em: 23 de setembro de 2025. DOI: https://doi.org/10.1016/S0044-8486(03)00476-9

TONG, Ruixue et al. Effects of feeding level and C/N ratio on water quality, growth performance, immune and antioxidant status of Litopenaeus vannamei in zero–water exchange bioflocs-based outdoor soil culture ponds. Fish & Shellfish Immunology, v. 101, p. 126-134, 2020. Disponível em: https://www.sciencedirect.com/science/article/abs/pii/S1050464820302199. Acesso em 12 de outubro de 2025. DOI: https://doi.org/10.1016/j.fsi.2020.03.051

XU, W. J.; PAN, L. Q. Effects of bioflocs on growth performance, digestive enzyme activity and body composition of juvenile Litopenaeus vannamei in zero‑water exchange tanks manipulating C/N ratio in feed. Aquaculture, v. 426‑427, p. 181‑188, 2014. Disponível em: https://www.sciencedirect.com/science/article/abs/pii/S0044848612003122. Acesso em 21 de agosto de 2025.

ZHANG, Kaiquan et al. Effect of using sodium bicarbonate to adjust the pH to different levels on water quality, the growth and the immune response of shrimp Litopenaeus vannamei reared in zero‐water exchange biofloc‐based culture tanks. Aquaculture Research, v. 48, n. 3, p. 1194-1208, 2017. DOI: https://doi.org/10.1111/are.12961

Published

2025-11-04

Issue

Section

Articles

How to Cite

DE FARIAS, Alice Katrícia Mendes Carvalho; DE SOUZA, Adailton Pinto; CORRÊA, Mizaira Sophia Cunha; PAZ, Bruna Cristina do Carmo; PORFÍRIO, Luana Oeiras; DA COSTA , Saymon Rodrigues Matos; BRANDÃO, Lian Valente; COSTA, Léa Carolina de Oliveira; DE CASTRO, Jeferson Stiver Oliveira. PHYSICOCHEMICAL DYNAMICS IN BIOFLOC SYSTEMS IN THE AMAZON: A MULTIVARIATE APPROACH APPLIED TO SHRIMP FARMING. ARACÊ , [S. l.], v. 7, n. 11, p. e9595, 2025. DOI: 10.56238/arev7n11-022. Disponível em: https://periodicos.newsciencepubl.com/arace/article/view/9595. Acesso em: 27 jan. 2026.