CARBON EMISSIONS IN DEGRADED AREAS: FACTORS, IMPACTS AND MITIGATION

Authors

  • Odair José de Oliveira Author
  • Gabriel Brito Costa Author
  • André Luiz Pereira da Silva Author
  • José Guilherme dos Santos Fernandes Author
  • Elizângela Maria Gonçalves Silva Author

DOI:

https://doi.org/10.56238/arev7n11-070

Keywords:

CO₂ Emissions, Degraded Areas, Climate Change, Ecological Restoration, Mitigation

Abstract

The emission of carbon dioxide (CO₂) from degraded areas is one of the main anthropogenic sources of greenhouse gases, exacerbating global climate change. This article aims to analyze the factors influencing carbon emissions in degraded areas, discuss their environmental and climatic impacts, and present mitigation and recovery strategies. Through a comprehensive review, it was identified that activities such as deforestation, fires, and unsustainable agricultural practices are the main drivers of degradation, transforming soils and vegetation, once carbon sinks, into emission sources. The impacts include biodiversity loss, alteration of the water regime, and intensification of the greenhouse effect. Mitigation strategies highlighted include ecological restoration, the adoption of sustainable agricultural practices (such as ILPF and no-till farming), and the implementation of effective public policies, such as the ABC+ Plan and the Forest Code. It is concluded that the recovery of these areas is crucial not only for emission reduction but also for promoting climate resilience, biodiversity conservation, and sustainable socioeconomic development.

Downloads

Download data is not yet available.

References

ARAGÃO, L. E. O. C. et al. 21st Century drought-related fires counteract the decline of Amazon deforestation carbon emissions. Nature Communications, v. 9, n. 1, p. 536, 2018. DOI: https://doi.org/10.1038/s41467-017-02771-y.

BRASIL. Ministério do Meio Ambiente. Em 12 meses, desmatamento na Amazônia registra segunda menor taxa da série histórica e menor índice de corte raso da floresta. Brasília, 8 nov. 2024. Disponível em: https://www.gov.br/mma/pt-br/noticias/em-12-meses-desmatamento-na-amazonia-registra-segunda-menor-taxa-da-serie-historica-e-menor-indice-de-corte-raso-da-floresta. Acesso em: 8 ago. 2025.

BRASIL. Ministério da Agricultura, Pecuária e Abastecimento. Plano Setorial para Adaptação à Mudança do Clima e Baixa Emissão de Carbono na Agropecuária 2020-2030 (Plano ABC+). 2022. Disponível em: https://www.gov.br/agricultura/pt-br/assuntos/sustentabilidade/plano-abc/plano-abc-2022-2030. Acesso em:03 de ago 2025.

CERRI, C. E. P. et al. Brazil’s sugarcane ethanol: developments so far and challenges for the future. Biofuels, Bioproducts and Biorefining, v. 1, n. 3, p. 270–282, 2007. DOI: https://doi.org/10.1002/bbb.32.

CHAZDON, R. L. Restoring forests and ecosystem services on degraded lands. Science, v. 356, n. 6344, p. 1055–1056, 2017. DOI: https://doi.org/10.1126/science.aan5610.

DON, A. et al. Land-use change to bioenergy production reduces carbon storage: a meta-analysis. GCB Bioenergy, v. 4, n. 2, p. 129–138, 2011. DOI: https://doi.org/10.1111/j.1757-1707.2011.01135.x.

ELISE ALVES VASCONCELOS, P.; VASCONCELOS, P. S. .; PEÑA DE MORAES, G. Transição energética como instrumento da tomada de decisão na governança climática. Revista Interdisciplinar do Direito - Faculdade de Direito de Valença, [S. l.], v. 23, n. 1, p. e20252305, 2025. DOI: 10.24859/RID.2025v23n1.1718. Disponível em: https://revistas.faa.edu.br/FDV/article/view/1718. Acesso em: 8 ago. 2025.

FAO – Food and Agriculture Organization of the United Nations. Global Forest Resources Assessment 2020 – Key Findings. Rome: FAO, 2020. Disponível em: https://www.fao.org/forest-resources-assessment. Acesso em: 28 maio 2025.

GUO, L. B.; GIFFORD, R. M. Soil carbon stocks and land use change: a meta analysis. Global Change Biology, v. 8, n. 4, p. 345–360, 2002. DOI: https://doi.org/10.1046/j.1354-1013.2002.00486.x.

HANSEN, M. C. et al. High-Resolution Global Maps of 21st-Century Forest Cover Change. Science, v. 342, n. 6160, p. 850–853, 2013.

IMAZON. Boletim do Desmatamento (SAD) - Julho de 2025. [S. l.], ago. 2025. Disponível em: https://imazon.org.br/wp-content/uploads/2025/08/INFBoletimSAD_Jul2025_A3_420x297_ImpreGrafRapida.pdf. Acesso em: 10 ago 2025

IPCC – Intergovernmental Panel on Climate Change. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2021. DOI: https://doi.org/10.1017/9781009157896.

LAL, R. Soil carbon sequestration impacts on global climate change and food security. Science, v. 304, p. 1623–1627, 2004. DOI: https://doi.org/10.1126/science.1097396.

MAPBIOMAS SOLO. Coleção 1 dos Mapas de Estoque de Carbono Orgânico do Solo do Brasil. 2023. Disponível em: https://mapbiomas.org/. Acesso em: 07 de ago 2025.

MEDEIROS, M. E. N. O. de; SIMÕES, A. da S.; REGALA, P. D. S.; SOUZA, C. P. de. Cenários climáticos e fatores antropogênicos no semiárido brasileiro: emissão de CO2, seca, desmatamento e queimadas. Cuadernos de Educación y Desarrollo, [S. l.], v. 17, n. 5, p. e8291, 2025. DOI: 10.55905/cuadv17n5-018. Disponível em: https://ojs.cuadernoseducacion.com/ojs/index.php/ced/article/view/8291. Acesso em: 9 ago. 2025.

MMA – Ministério do Meio Ambiente. Plano Nacional de Recuperação da Vegetação Nativa (Planaveg). Brasília: MMA, 2017. Disponível em: https://www.mma.gov.br. Acesso em: 28 maio 2025.

OLIVEIRA, Railton Morais; SOUZA, Argel Costa; GOMES, Gabriele Silva; RAABE, Joabel; SCHNEIDER, Chaiane Rodrigues; ANGELO, Dalton Henrique. Diagnóstico ambiental e proposta de restauração ecológica em mata ciliar no rio Tocantins. Revista em Agronegócio e Meio Ambiente, [S. l.], v. 17, p. e12285, 2024. DOI: 10.17765/2176-9168.2024v17n.Especial.e12285. Disponível em: https://periodicos.unicesumar.edu.br/index.php/rama/article/view/12285. Acesso em: 8 ago. 2025.

OBSERVATÓRIO DO CLIMA. Sistema de Estimativas de Emissões e Remoções de Gases de Efeito Estufa (SEEG) - 8ª edição. 2022. Disponível em: https://plataforma.seeg.eco.br/. Acesso em: 05 ago 2025.

PAN, Y. et al. A large and persistent carbon sink in the world’s forests. Science, v. 333, p. 988–993, 2011. DOI: https://doi.org/10.1126/science.1201609.

PANOSSO, A.R.; MARQUES JR, J.; PEREIRA, G.T. & LA SCALA JR., N. Spatial and temporal variability of soil CO2 emission in a sugarcane area under green and slash-andburn managements. Soil Till. Res., 105:275-282, 2009.

SILVA, ALP da, & FERNANDES, JG dos S. (2025). Etnopedologia na Amazônia: saberes tradicionais e pedologia. Revista De Gestão - RGSA , 19 (8), e013136. https://doi.org/10.24857/rgsa.v19n8-037

SILVA, R. F. da et al. Carbon fluxes in Amazon degraded lands: the role of soil and vegetation recovery. Biogeosciences, v. 19, p. 2027–2042, 2022. DOI: https://doi.org/10.5194/bg-19-2027-2022.

SANTOS, Daniel; LIMA, Manuele; VILHENA, Agatha; VERÍSSIMO, Beto; SILVA, Caíque. Fatos da Amazônia 2025: Desmatamento e Degradação Florestal na Amazônia Legal – Agosto 2024 a Julho 2025. Belém: Instituto do Homem e Meio Ambiente da Amazônia, 2025. Disponível em: https://imazon.org.br/wp-content/uploads/2025/05/FatosAMZ2025.pdf. Acesso em: 05 ago.2025.

VARELLA, R.F.; BUSTAMANTE, M.M.C.; PINTO, A.S.; KISSELLE, K.W.; SANTOS, R.V.; BURKE, R.A.; ZEPP, R.G. & VIANA, L.T. Soil fluxes of CO2, CO, NO and N2O an old pasture and from native savanna in Brazil. Ecol. Applic., 14:221-231, 2004.

Published

2025-11-10

Issue

Section

Articles

How to Cite

DE OLIVEIRA, Odair José; COSTA, Gabriel Brito; DA SILVA, André Luiz Pereira; FERNANDES, José Guilherme dos Santos; SILVA, Elizângela Maria Gonçalves. CARBON EMISSIONS IN DEGRADED AREAS: FACTORS, IMPACTS AND MITIGATION. ARACÊ , [S. l.], v. 7, n. 11, p. e9766, 2025. DOI: 10.56238/arev7n11-070. Disponível em: https://periodicos.newsciencepubl.com/arace/article/view/9766. Acesso em: 5 dec. 2025.