FUZZY MODELING TO ASSIST IN ASSESSING SCHOOL PERFORMANCE
DOI:
https://doi.org/10.56238/arev8n2-082Keywords:
Educational Metrics, Decision Making, Learning IndicatorsAbstract
School assessment remains one of the major challenges in measuring student performance. Among the types of assessment, objective assessments, of a quantitative nature, and subjective assessments, considered qualitative, stand out. One of the challenges in education is measuring these two criteria, assigning a substantial evaluation to the student. In this context, this work presents a fuzzy model capable of integrating objective and subjective data in measuring school performance. The proposed model incorporates three criteria: Attendance, Grade, and Participation, combined into a set of 27 rules and applied through a Takagi-Sugeno inference system. The model's efficiency is proven through tests, whose results indicate consistency between the evaluative variables used in the modeling. In addition to being an important tool to assist teachers in their evaluative decisions, the model allows adjustments to its parameters and variables, and can be adapted to new educational contexts.
Downloads
References
BASSANEZI, Rodney Carlos. Modelagem Matemática: teoria e prática. São Paulo: Contexto, 2015. 240 p. ISBN 978‑85‑7244‑893‑2.
CAMARGOS, Fernando Laudares. Lógica Nebulosa: uma abordagem filosófica e aplicada. Florianópolis: UFSC, 2002.
CASTILLO, O., VALDEZ, F., MELIN, P., DING, W. Uma pesquisa sobre sistemas de lógica fuzzy tipo-3 e suas aplicações de controle. IEEE/CAA Journal of Automatica Sinica, 11 (8), 1744-1756, 2024.
CONNER, Jerusha et al. How teachers’ student voice practices affect student engagement and achievement: exploring choice, receptivity, and responsiveness to student voice as moderators. Journal of educational change, v. 26, n. 1, p. 89-118, 2025.
FERNANDES, Domingos. Avaliações externas e aprendizagens dos alunos: uma reflexão crítica. Linhas Críticas, v. 25, 2019.
FRANZ, L. A. dos S.; SILVA, M. A. G.; BEMVENUTI, R. H. Aplicação da Lógica Fuzzy na Segurança e Saúde do Trabalho. Revista Latino Americana de Inovação e Engenharia de Produção, Curitiba, v. 10, n. 17, p. 97–112, jul. 2022.
JuzzyOnline – Fuzzy Logic Toolbox. Disponível em: https://juzzyonline.com. Acesso em: 03 fev. 2026.
PEDRYCZ, Witold; GOMIDE, Fernando. Uma introdução aos conjuntos fuzzy: análise e projeto. MIT Press, 1998.
KEARNEY, Christopher A.; BENOIT, Laelia; GONZÁLVEZ, Carolina; KEPPENS, Gil Antoine. School attendance and school absenteeism: A primer for the past, present, and theory of change for the future. Frontiers in Education, Lausanne, v. 7, p. 1044608, nov. 2022.
MAMDANI, Ebrahim H.; ASSILIAN, Sedrak. An experiment in linguistic synthesis with a fuzzy logic controller. International journal of man-machine studies, v. 7, n. 1, p. 1-13, 1975.
MURPHY, Dillon H.; LITTLE, Jeri L.; BJORK, Elizabeth L. O valor do uso de testes na educação como ferramentas para a aprendizagem — e não apenas para a avaliação. Educational Psychology Review, v. 35, n. 3, p. 89, 2023.
ROSS, Timothy J. Fuzzy Logic with Engineering Applications. Chichester: Wiley, 2016.
SAATCHI, Reza. Fuzzy logic concepts, developments and implementation. Information, v. 15, n. 10, 2024.
SÄLZER, Christine; RICKING, Heinrich; FELDHAUS, Michael. Abordando o absenteísmo escolar por meio do monitoramento: uma revisão de políticas e práticas educacionais baseadas em evidências. Education Sciences, v. 14, n. 12, p. 1365, 2024.
KANG, Geun-Taek; SUGENO, Michio. Fuzzy modelling. Transactions of the Society of Instrument and Control Engineers, v. 23, n. 6, p. 650-652, 1987.
ZADEH, L. A. Fuzzy Sets. Information and Control, Londres, v. 8, n. 3, p. 338–353, 1965.