INTERDISCIPLINARY PROJECTS AND ACTIVE METHODOLOGIES IN TEACHING PHYSICS AND EDUCATIONAL ROBOTICS
DOI:
https://doi.org/10.56238/arev7n12-260Keywords:
Project-Based Learning, Maker Culture, Sustainability, EducationAbstract
This study presents the implementation of interdisciplinary projects that articulate Physics, Educational Robotics, and sustainability in technical high school, using active methodologies such as Project-Based Learning and maker culture. Three projects were analyzed: Arduínisse!, Construtores do Amanhã (Builders of Tomorrow), and Projeto de Sustentabilidade (Sustainability Project), which integrated content on work and energy, Newton's laws, electricity, power, and waves into the construction of robotic prototypes and sustainable artifacts. The results, systematized in comparative tables, show advances in the understanding of physical concepts, greater student engagement, and the development of skills such as critical thinking, collaboration, creativity, and leadership. The reuse of electronic scrap promoted socio-environmental awareness and alignment with SDGs such as 4, 9, 11, 12, and 13. It is concluded that the integration of Physics, robotics, and sustainable practices constitutes an effective strategy to enhance meaningful learning, bring science and technology closer to students' daily lives, and strengthen civic education.
Downloads
References
BADELEH, A. The effects of robotics training on students’ creativity and learning in physics. Educ Inf Technol 26, 1353–1365, 2021. https://doi.org/10.1007/s10639-019-09972-6
CAKIR, N., & GUVEN, G. Enhancing engineering design, scientific creativity, and decision-making skills in prospective science teachers through engineering design-based robotics coding applications. Research in Science & Technological Education, 1–26, 2025. https://doi.org/10.1080/02635143.2025.2456778
CHING, Y., YANG, D., WANG, S., BAEK, Y., SWANSON, S., & CHITTOORI, B. Elementary School Student Development of STEM Attitudes and Perceived Learning in a STEM Integrated Robotics Curriculum. TechTrends 63, 590–601, 2019. https://doi.org/10.1007/S11528-019-00388-0
CUTRIM, S. P.; MARTINS, W. A.; CUNHA, D. A. dos S. Alternativas sustentáveis para a elaboração de artesanatos utilizando lixo eletrônico como forma de geração de renda em comunidade maranhense. Revista Livre De Sustentabilidade e Empreendedorismo, 10(2), 133–144, 2025. https://doi.org/10.5281/zenodo.14974737
DARMAWANSAH, D., HWANG, G., CHEN, M., & LIANG, J. Trends and research foci of robotics-based STEM education: a systematic review from diverse angles based on the technology-based learning model. IJ STEM Ed 10, 12, 2023. https://doi.org/10.1186/s40594-023-00400-3
DE OLIVEIRA, V. J.; DA SILVA, C. R.; DA SILVA, J. P.; DE REZENDE E SILVA, D. A.; DE OLIVEIRA, L. C. S. Aprendizagem baseada em projetos: o aluno como protagonista do aprendizado. ARACÊ, [S. l.], v. 7, n. 6, p. 30790–30803, 2025. https://doi.org/10.56238/arev7n6-100
FREITAS, E., DA SILVA, C., MACHADO, P., MOREIRA, M., & MOREIRA, P. Low-Cost Automated Vegetable Garden: Integrating Educational Robotics in High School. Revista De Gestão - RGSA, 18(7), e08357, 2024. https://doi.org/10.24857/rgsa.v18n7-167
KANAKI, K., CHATZAKIS, S., & KALOGIANNAKIS, M. Fostering Algorithmic Thinking and Environmental Awareness via Bee-Bot Activities in Early Childhood Education. Sustainability, 17(9), 4208, 2025. https://doi.org/10.3390/su17094208
LATHIFAH, A., BUDIYANTO, C., & YUANA, R. The contribution of robotics education in primary schools: Teaching and learning. AIP Conf. Proc. 2194, 020053, 2019. https://doi.org/10.1063/1.5139785
LLANOS-RUIZ, D., AUSÍN-VILLAVERDE, V., & ABELLA-GARCÍA, V. Interpersonal and Intrapersonal Skills for Sustainability in the Educational Robotics Classroom. Sustainability, 16(11), 4503, 2024. https://doi.org/10.3390/su16114503
MORAITI, I., FOTOGLOU, A., & DRIGAS, A. Coding with Block Programming Languages in Educational Robotics and Mobiles, Improve Problem Solving, Creativity & Critical Thinking Skills. International Journal of Interactive Mobile Technologies (iJIM), 16(20), pp. 59–78, 2022. https://doi.org/10.3991/ijim.v16i20.34247
MALTA, D. P. L. N.; NETO, J. S. S.; CARDOSO, M. S. F.; CABRAL, A. R. S.; DA COSTA, T. R.; FRANÇA, E. F. Robótica gamificada: um caminho eficaz para o ensino de programação no ensino fundamental. ARACÊ, [S. l.], v. 6, n. 2, p. 2519–2535, 2024. https://doi.org/10.56238/arev6n2-122
MARINHO, J. R.; LIMA, C. F.; CORDEIRO, J. S.; RODRIGUES, J. S. M.; ANTUNES, M. M. S.; GUIMARÃES, R. B. N.; DOS SANTOS, S. A.; DA CRUZ, T. M. Robótica educacional e cultura maker na escola pública. ARACÊ, [S. l.], v. 7, n. 6, p. 29380–29397, 2025. https://doi.org/10.56238/arev7n6-022
NGUGI, M., MAINA, M., & BYRNE, A. The Impact of Robotic Activities on Secondary School Students’ Interest in Physics in Kenya. International Journal of Computer Applications Technology and Research 12(1), 53-59, 2023,. https://doi.org/10.7753/ijcatr1201.1008
PEREIRA, S. M. J.; SANTOS, S. M. A. V.; FRANQUEIRA, A. S.; PORTES, C. S. V.; DE CARVALHO, J. S.; DE SOUZA, L. V. S.; DE OLIVEIRA, R. O.; FEITOSA, V. C. A. Práticas pedagógicas e metodologias ativas no ensino em tempo integral: a conexão entre teoria e prática. ARACÊ, [S. l.], v. 6, n. 3, p. 8597–8614, 2024. https://doi.org/10.56238/arev6n3-252
POU, A., CANALETA, X., & FONSECA, D. Computational Thinking and Educational Robotics Integrated into Project-Based Learning. Sensors (Basel, Switzerland), 22(10), 3746, 2022. https://doi.org/10.3390/s22103746
SCARPIN, E. J.; CARDOSO, A. S.; DA SILVA, M. C. C. T.; MAIA, E. A.; DEMUNER, J. A. Aprendizagem que inspira: metodologias ativas em ação. ARACÊ, [S. l.], v. 7, n. 2, p. 7892–7909, 2025. https://doi.org/10.56238/arev7n2-195
SENA, G., MESQUITA, L., MONTEIRO, M., MUNIZ, J., & DE FREITAS OLIVEIRA, A. Robotics in the teaching of physics: a project based approach. Education and New Developments, 483-487, 2019. https://doi.org/10.36315/2019v1end110