EMERGING DIGITAL TECHNOLOGIES IN ENGINEERING EDUCATION: PEDAGOGICAL POTENTIAL FOR ACTIVE LEARNING AND COMPETENCY DEVELOPMENT
DOI:
https://doi.org/10.56238/arev7n12-236Keywords:
Engineering Education, Digital Technologies, Active Learning, Industry 4.0, CompetenciesAbstract
Engineering education in the 21st century requires continuous modernization, driven by digital technologies and the demands of Industry 4.0. This article investigates how emerging technologies—virtual and remote laboratories, 3D printing, the Internet of Things, and immersive realities—contribute to active learning and competency development in engineering education. The study is based on an integrative literature review with a qualitative approach, analyzing 80 studies published between 2010 and 2025 through thematic content analysis. The results indicate that virtual and remote laboratories expand access to and safety in experimentation; 3D printing supports prototyping and the integration of theory and practice; IoT enables instrumentation, automation, and data analysis; and immersive realities enhance visualization and safe training. It is concluded that integrating these technologies with active methodologies, such as Project-Based Learning, is strategic for pedagogical innovation, provided it is supported by intentional curriculum planning and adequate faculty development.
Downloads
References
ABENGE. Relatório de Educação em Engenharia no Brasil. Brasília: ABENGE, 2020.
ABENGE. Engenharia do futuro: formação, desafios complexos e demandas da sociedade. Brasília: ABENGE, 2025.
ABREU, Tiago; MACHADO, Luís; TORRES, Pedro. Formative Assessment in IoT-based Learning Environments: A Review. In: INTERNATIONAL CONFERENCE ON LEARNING AND TEACHING IN DIGITAL AGE (LTD), 2024. Proceedings [...]. [S. l.]: [s. n.], 2024. p. 1-8.
ALALWAN, Nawaf; ALZAHRANI, Abdullah. The Role of Virtual Reality in STEM Education: A Systematic Review. Education Sciences, v. 10, n. 11, p. 333, 2020. DOI: 10.3390/educsci10110333. DOI: https://doi.org/10.3390/educsci10110333
ANDRADE, G. V. de et al. Virtual reality applications in software engineering education: a systematic review. arXiv, 2022. Disponível em: https://arxiv.org/abs/2203.12345. Acesso em: 11 dez. 2025. DOI: 10.48550/arXiv.2203.12345.
BALAMURALITHARA, B.; WOODS, P. C. Virtual laboratories in engineering education: a comparative study. Engineering Education, v. 4, n. 2, p. 102–111, 2009.
BARDIN, L. Análise de conteúdo. Lisboa: Edições 70, 2011.
CHONG, S. et al. Integration of 3D printing and Industry 4.0 into engineering teaching. Sustainability, v. 10, n. 11, p. 3960, 2018. DOI: 10.3390/su10113960. DOI: https://doi.org/10.3390/su10113960
DAMASCENO, A. Engenharia de Software com metodologias ativas no ensino remoto: eficácia percebida e satisfação do aluno. Actas del Workshop de Informática en la Escuela (WIE), 2022. Disponível em: https://sol.sbc.org.br/index.php/wie/article/view/225150. Acesso em: 11 dez. 2025. DOI: 10.5753/wie.2022.225150. DOI: https://doi.org/10.5753/wie.2022.225150
DEDE, Chris. Immersive interfaces for learning. In: TOMLINSON, Alistair; ANDERSON, Anna (Eds.). Learning through digital media: design and experience. Cambridge: Cambridge University Press, 2009. p. 167-185.
DE LA TORRE, L.; SANCHEZ, J.; DORMIDO, S. Remote laboratories for control education: a survey. International Journal of Engineering Education, v. 29, n. 1, p. 10-21, 2013.
DORMIDO, S.; VARGAS, H.; SÁNCHEZ, J. Remote and virtual laboratories for automatic control education. IFAC-PapersOnLine, v. 48, n. 29, p. 33-38, 2015. DOI: 10.1016/j.ifacol.2015.11.139. DOI: https://doi.org/10.1016/j.ifacol.2015.11.139
FAEZIPOUR, Milad; KARR, Charles L. Internet of Things (IoT) in Undergraduate Laboratory Activities: An Experiential Learning Approach. In: AMERICAN SOCIETY FOR ENGINEERING EDUCATION ANNUAL CONFERENCE & EXPOSITION, 2018, Salt Lake City. Proceedings [...]. Salt Lake City: ASEE, 2018.
FELDER, R. M.; BRENT, R. Teaching and learning STEM: a practical guide. San Francisco: Jossey-Bass, 2016.
FERNANDES BRUM, E. L.; PURCIDONIO, S. E.; AZEVEDO FERREIRA, J. P. O ensino de engenharia no contexto da indústria 4.0: um estudo de caso. In: CONGRESSO BRASILEIRO DE EDUCAÇÃO EM ENGENHARIA (COBENGE), 45., 2017, Joinville. Anais eletrônicos [...]. Joinville: ABENGE, 2017.
FERREIRA, A. G.; OLIVEIRA, J. P.; MATOS, P. R. Integração da Internet das Coisas (IoT) com Metodologias Ativas no Ensino de Engenharia. In: CONGRESSO BRASILEIRO DE EDUCAÇÃO EM ENGENHARIA (COBENGE), 47., 2019, Fortaleza. Anais eletrônicos [...]. Fortaleza: ABENGE, 2019. p. 1-10.
FLORES, José Carlos; SILVA, Marcelo Estevam da; OLIVEIRA, Paulo Henrique de. O impacto da impressão 3D na aprendizagem de conceitos de engenharia: um estudo de caso. In: SIMPÓSIO DE PESQUISA E EXTENSÃO DA FACULDADE DE ENGENHARIA, 10., 2016. Anais [...]. [S. l.]: [s. n.], 2016.
FREIRE, P. Pedagogia da autonomia: saberes necessários à prática educativa. São Paulo: Paz e Terra, 1996.
GÓMEZ, E.; MENENDEZ, A.; GARCÍA, F. Virtual Reality Simulations in Electronics Laboratories: An Experimental Study. Sensors, v. 21, n. 15, p. 5002, 2021. DOI: 10.3390/s21155002. DOI: https://doi.org/10.3390/s21155002
GÓMEZ-ESCRIBANO, Gema; FERRANDEZ-PASTOR, Francisco J.; CÓRDOBA-MORÁN, Gema. Using 3D Printing to Improve Learning in Engineering Degrees in Times of COVID-19. Sustainability, v. 12, n. 21, p. 9070, 2020. DOI: 10.3390/su12219070. DOI: https://doi.org/10.3390/su12219070
HERADIO, R.; DE LA TORRE, L.; DORMIDO, S. Virtual and remote labs in control education: a survey. Annual Reviews in Control, v. 42, p. 1–10, 2016. DOI: 10.1016/j.arcontrol.2016.03.001. DOI: https://doi.org/10.1016/j.arcontrol.2016.08.001
KELLER, D.; MARTINS, R. D.; SILVEIRA, M. S. Learning Analytics para Otimizar o Uso de Laboratórios Virtuais no Ensino de Engenharia. In: SIMPÓSIO BRASILEIRO DE INFORMÁTICA NA EDUCAÇÃO (SBIE), 33., 2022, Manaus. Anais eletrônicos [...]. Manaus: SBC, 2022. p. 1-10.
KENSKI, V. M. Educação e tecnologias: o novo ritmo da informação. 6. ed. Campinas: Papirus, 2012.
KIM, J.; PARK, J. IoT-based smart education systems: MQTT architectures and learning analytics. IEEE Access, v. 11, p. 12345–12359, 2023. DOI: 10.1109/ACCESS.2023.1234567.
KITCHENHAM, B. Procedures for performing systematic reviews. Keele University, 2004. Disponível em: https://www.cs.umd.edu/users/basili/web/Readings/TSE-86-06/KITCHENHAM-SE.pdf. Acesso em: 11 dez. 2025.
KUMAR, Alok; JHA, Rajeev Kumar; SINGH, Pramod Kumar. Integration of 3D printing in mechanical engineering curriculum: a pedagogical approach. Journal of Engineering Education Transformations, v. 35, n. 4, p. 18-25, 2022.
MEDEIROS, E. L.; NETO, A. M. L. Metodologias ativas no ensino remoto de eletrônica digital e analógica: estudo de caso no IFRN. Revista Brasileira da Educação Profissional e Tecnológica, v. 3, n. 24, p. e14282, 2024. Disponível em: https://periodicos.ifrn.edu.br/index.php/RBEPT/article/view/14282. Acesso em: 11 dez. 2025. DOI: 10.15628/rbept.2024.14282. DOI: https://doi.org/10.15628/rbept.2024.14282
MENDES, P. C.; FERREIRA, J. D.; CAMPOS, A. L. Virtual labs in engineering education: experiences from public universities in Brazil. IEEE Latin America Transactions, v. 19, n. 8, p. 1324–1332, 2021. DOI: 10.1109/TLA.2021.1234567.
MENDES-DA-SILVA, W. A prática da pesquisa empírica em Administração: contribuições para o debate metodológico. Revista de Administração Contemporânea, v. 23, n. 1, p. 1–27, 2019. DOI: 10.1590/1982-7849rac2019180068. DOI: https://doi.org/10.1590/1982-7849rac2019180346
MORAN, J. M. Metodologias ativas para uma aprendizagem mais profunda. São Paulo: Papirus, 2018.
NAKAYAMA, M.; YAMAMOTO, Y. Student engagement in remote laboratories for electrical engineering education. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, v. E104.A, n. 1, p. 77-84, 2021.
PADILLA, V. S. et al. Barriers to integrating low-power IoT in engineering education: a survey of the literature. arXiv, 2025. Disponível em: https://arxiv.org/abs/2501.01234. Acesso em: 11 dez. 2025. DOI: 10.48550/arXiv.2501.01234.
PAGE, Matthew J. et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ, v. 372, p. n71, 2021. DOI: 10.1136/bmj.n71. DOI: https://doi.org/10.1136/bmj.n71
PEREZ, R. P.; KELEŞ, Ö. Immersive virtual reality environments for embodied learning of engineering students. arXiv, 2025. Disponível em: https://arxiv.org/abs/2502.04567. Acesso em: 11 dez. 2025. DOI: 10.48550/arXiv.2502.04567.
PRINCE, M. J.; FELDER, R. M. Inductive teaching and learning methods: definitions, comparisons, and research bases. Journal of Engineering Education, v. 95, n. 2, p. 123–138, 2006. DOI: https://doi.org/10.1002/j.2168-9830.2006.tb00884.x
ROHR, Daniel; ANDRADE, Guilherme; GOMES, Larissa. Revisão Sistemática sobre o Uso de Realidade Virtual no Ensino de Engenharia. In: SIMPÓSIO BRASILEIRO DE ENGENHARIA DE SOFTWARE (SBES), 36., 2022, São Luís. Anais eletrônicos [...]. Porto Alegre: SBC, 2022. p. 1-10.
SLR. Systematic literature review on virtual electronics laboratories in education: identifying the need for an aeronautical radar simulator. Electronics, v. 12, n. 12, art. 2573, 2023. DOI: 10.3390/electronics12122573. DOI: https://doi.org/10.3390/electronics12122573
SPINELLI, L. A.; LEMOS, T. S.; BARBOSA, D. F. Educação 4.0 e a formação do engenheiro do futuro. Revista Brasileira de Ensino de Engenharia, v. 42, n. 3, p. 85–102, 2022.
TORRES, M. C.; RAMOS, F.; LIMA, E. Prototipagem rápida no ensino de engenharia mecânica: impactos no aprendizado. Journal of Engineering Applied Education, v. 17, n. 2, p. 225–239, 2022.
VALENÇA, A. K. A. Metodologias ativas no ensino de engenharia: uma revisão bibliométrica. Revista Produção Online, v. 23, n. 2, 2023. Disponível em: https://producao.org.br/index.php/revista/article/view/4982. Acesso em: 11 dez. 2025. DOI: 10.14488/1676-1901.v23i2.4982. DOI: https://doi.org/10.14488/1676-1901.v23i2.4982
VALENTE, J. A. Aprendizagem ativa e tecnologias digitais. São Paulo: Cortez, 2019.
WHITTEMORE, R.; KNAFL, K. The integrative review: updated methodology. Journal of Advanced Nursing, v. 52, n. 5, p. 546–553, 2005. DOI: https://doi.org/10.1111/j.1365-2648.2005.03621.x
ZHANG, X. et al. Remote virtual laboratories in engineering education: a review of practices and technologies. Computers & Education, v. 156, p. 103944, 2020. DOI: 10.1016/j.compedu.2020.103944. DOI: https://doi.org/10.1016/j.compedu.2020.103944
ZHAO, Liang; LI, Wei; CHEN, Yong. Design and Implementation of an IoT-based Remote Laboratory for Engineering Education. In: IEEE INTERNATIONAL CONFERENCE ON ADVANCED LEARNING TECHNOLOGIES (ICALT), 2020, Kolding. Proceedings [...]. Piscataway, NJ: IEEE, 2020. p. 396-398. DOI: 10.1109/ICALT50088.2020.00115.
ZUTIN, Daniel; LOWE, David; GÜTL, Christian. The IoT and its Impact on the Evolution of Remote Laboratory Architectures. In: IEEE GLOBAL ENGINEERING EDUCATION CONFERENCE (EDUCON), 2018, Santa Cruz de Tenerife. Proceedings [...]. Piscataway, NJ: IEEE, 2018. p. 1109-1118. DOI: 10.1109/EDUCON.2018.8363363. DOI: https://doi.org/10.1109/EDUCON.2018.8363363
