ARTIFICIAL INTELLIGENCE IN MARKETING CAMPAIGNS: A WAY TO ADAPT MARKETING TO NEW TECHNOLOGIES

Authors

  • Andrey Cesar de Lucena de Barros Author
  • Ricardo Marciano dos Santos Author
  • Alfredo Nazareno Pereira Boente Author
  • Vinícius Marques da Silva Ferreira Author
  • Miguel Gabriel P de Carvalho Author
  • Thiago Silva da Conceiçao Author
  • Rosangela de Sena Almeida Author
  • Renata Miranda Pires Boente Author

DOI:

https://doi.org/10.56238/arev7n12-026

Keywords:

Artificial Intelligence, Digital Marketing, Content Automation, LLMs, FastAPI

Abstract

The contemporary landscape of Digital Marketing is marked by the incessant demand for personalized and optimized content, which poses a critical challenge to teams: the inefficiency in the manual analysis of information and the subsequent slowness in writing campaigns, limiting the scalability of corporate communication. The aim is to mitigate this limitation through the development of SocialGen-AI, a generative Artificial Intelligence system designed for end-to-end automation of the creation of promotional texts for social media, starting from the structural and semantic analysis of web pages. The implementation methodology is based on Agile Software Engineering, culminating in a solution implemented in Python and structured via API, which integrates with the Ollama framework for the optimized execution of the DeepSeek large language model. The process includes data extraction, contextualized semantic analysis, and the generation of copy with tone and style adjustments. Thus, SocialGen- AI allows for a substantial reduction in content time-to-market, in addition to ensuring high consistency and personalization at scale. In conclusion, an architecture based on local LLMs and dedicated APIs represents a viable and scalable technological solution for optimizing marketing productivity, paving the way for future research focused on native integration with social media platforms and the continuous improvement of AI's contextual accuracy.

Downloads

Download data is not yet available.

References

BARROS, Andrey. socialgenai [repositório GitHub]. Disponível em: https://github.com/DreyLB/socialgenai. Acesso em: 30 nov. 2025.

BARROS, Andrey. frontSocialgenai [repositório GitHub]. Disponível em: https://github.com/DreyLB/socialgenai. Acesso em: 30 nov. 2025.

BOENTE, Alfredo Nazareno Pereira. Análise de sentimento nas redes sociais como ferramenta de apoio à tomada de decisão na gestão de risco reputacional no setor bancário. Aracê, [S. l.], v. 7, n. 10, p. e8856, 2025. DOI: 10.56238/arev7n10-149. Disponível em: https://periodicos.newsciencepubl.com/arace/article/view/8856. Acesso em: 30 out. 2025.

BROWN, Tom B. et al. Language Models are Few-Shot Learners. In: ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS (NEURIPS), 2020. Disponível em: https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf. Acesso em: 17 nov. 2025.

DEEPSEEK API. DeepSeek API Documentation – Quick Start / Your First API Call. Disponível em: https://api-docs.deepseek.com/. Acesso em: 14 nov. 2025.

DOS SANTOS, Ricardo Marciano. Análise de sentimento nas redes sociais como ferramenta de apoio à tomada de decisão na gestão de risco reputacional no setor bancário. Aracê, [S. l.], v. 7, n. 10, p. e8856, 2025. DOI: 10.56238/arev7n10-149. Disponível em: https://periodicos.newsciencepubl.com/arace/article/view/8856. Acesso em: 30 out. 2025.

FERREIRA, Vinícius Marques da Silva. Análise de sentimento nas redes sociais como ferramenta de apoio à tomada de decisão na gestão de risco reputacional no setor bancário. Aracê, [S. l.], v. 7, n. 10, p. e8856, 2025. DOI: 10.56238/arev7n10-149. Disponível em: https://periodicos.newsciencepubl.com/arace/article/view/8856. Acesso em: 30 out. 2025.

FIELDING, Roy T. Architectural Styles and the Design of Network-based Software Architectures. 2000. Tese (Doutorado) — University of California, Irvine, 2000.

FOWLER, Martin. Patterns of Enterprise Application Architecture. Boston: Addison- Wesley Professional, 2002.

GOODFELLOW, Ian; BENGIO, Yoshua; COURVILLE, Aaron. Deep Learning. Cambridge: MIT Press, 2016.

GUPTA, Lokesh. What is REST? REST API Tutorial. Disponível em: https://restfulapi.net/. Acesso em: 14 nov. 2025.

KOTLER, Philip; KELLER, Kevin Lane. Administração de Marketing. 15. ed. São Paulo: Pearson Education do Brasil, 2018.

LECUN, Yann; BENGIO, Yoshua; HINTON, Geoffrey. Deep learning. Nature, v. 521, n. 7553, p. 436–444, 2015.

OLLAMA. Ollama’s documentation. Disponível em: https://docs.ollama.com/. Acesso em: 14 nov. 2025.

SILVA, Wallysson Klebson de Medeiros. Comportamento do consumidor no processo de compra e a influência das ferramentas de inteligência artificial. 2023. Tese (Doutorado em Administração) — Universidade Federal da Paraíba, João Pessoa, 2023.

SOMMERVILLE, Ian. Engenharia de Software. 10. ed. São Paulo: Pearson, 2019.

TIANGOLO. FastAPI framework, high performance, easy to learn, fast to code, ready for production. Disponível em: https://fastapi.tiangolo.com/. Acesso em: 14 nov. 2025.

Published

2025-12-03

Issue

Section

Articles

How to Cite

DE BARROS, Andrey Cesar de Lucena; DOS SANTOS, Ricardo Marciano; BOENTE, Alfredo Nazareno Pereira; FERREIRA, Vinícius Marques da Silva; DE CARVALHO, Miguel Gabriel P; DA CONCEIÇAO, Thiago Silva; ALMEIDA, Rosangela de Sena; BOENTE, Renata Miranda Pires. ARTIFICIAL INTELLIGENCE IN MARKETING CAMPAIGNS: A WAY TO ADAPT MARKETING TO NEW TECHNOLOGIES. ARACÊ , [S. l.], v. 7, n. 12, p. e10702, 2025. DOI: 10.56238/arev7n12-026. Disponível em: https://periodicos.newsciencepubl.com/arace/article/view/10702. Acesso em: 5 dec. 2025.