COMPARATIVE PERFORMANCE ANALYSIS OF CONTROLLED-SOURCE ELECTROMAGNETIC METHOD CAMPAIGNS AND SURVEY DESIGN - MARLIM OILFIELD CASE STUDY
DOI:
https://doi.org/10.56238/arev7n11-302Keywords:
Reservoir Monitoring, Electromagnetic Method, Multiphysics Modelling, Marlim Oilfield, Frequency DomainAbstract
The controlled-source electromagnetic method (CSEM) has been gaining considerable attention and its main use is the monitoring of hydrocarbon reservoirs, due to its sensitivity in the verification of electrical resistivity contrasts, in addition to being slightly less harmful to marine biota than traditional seismic methods. In this manuscript, a multiphysics modelling of the marine controlled-source electromagnetic method (MCSEM) and the vertical-vertical controlled-source electromagnetic method (VVCSEM) was constructed using a realistic geologic model from the Marlim oilfield, Campos Basin - Brazil. Marlim is an oilfield belonging to the Marlim Complex, located in the Brazilian passive margin, which has large intervals of carbonate rocks that laterally mix with sandy sequences. The basin is dominated by shales intercalated with turbiditic sandstones at greater depths, very similar to the stratigraphic package found in the Potiguar Basin – Brazil. A comparison between the two CSEM methodologies is presented, as well as a survey design proposal. The MCSEM and the VVCSEM methods proved to be efficient in detecting the responses of the hydrocarbon reservoir even in the face of a considerable layer of salt, with VVCSEM achieving a better imaging response in some geological situations in which MCSEM almost did not identify the presence of a reservoir.
Downloads
References
Allouche, J., & Shallit, J. (1999). The ubiquitous Prouhet-Thue-Morse sequence. In C. Ding, T. Helleseth, & H. Niederreiter (Eds.), Sequences and their applications (pp. 1–16). Springer London. https://doi.org/10.1007/978-1-4471-0551-0_1 DOI: https://doi.org/10.1007/978-1-4471-0551-0_1
Barsukov, P., Fainberg, E. B., & Singer, B. (2007). A method for hydrocarbon reservoir mapping and apparatus for use when performing the method (Patent No. WO2007/053025). World Intellectual Property Organization. PCT/NO2006/000372.
Barsukov, P. O., Fainberg, E. B., & Singer, B. (2008). A method for mapping hydrocarbon reservoirs in shallow waters and also apparatus for use practising the method (Patent No. WO2008/066389). World Intellectual Property Organization. PCT/NO2007/000416.
Carvalho, B. R., & Menezes, P. T. (2017). Marlim R3D: A realistic model for CSEM simulations—Phase 1: Model building. Brazilian Journal of Geology, 47(4), 633–644. https://doi.org/10.1590/2317-4889201720170088 DOI: https://doi.org/10.1590/2317-4889201720170088
Castro, R. D., & Picolini, J. P. (2015). Principais aspectos da geologia regional da Bacia de Campos. In R. O. Kowsmann (Ed.), Geologia e geomorfologia (Habitats, Vol. 1, pp. 1–12). Elsevier. https://doi.org/10.1016/B978-85-352-6937-6.50008-2 DOI: https://doi.org/10.1016/B978-85-352-6937-6.50008-2
Chave, A. D., & Cox, C. S. (1982). Controlled electromagnetic sources for measuring electrical conductivity beneath the oceans: 1. Forward problem and model study. Journal of Geophysical Research, 87(B7), 5327–5338. https://doi.org/10.1029/JB087iB07p05327 DOI: https://doi.org/10.1029/JB087iB07p05327
Clemens, M., & Weiland, T. (2001). Discrete electromagnetism with the finite integration technique. Journal of Electromagnetic Waves and Applications, 15(1), 79–80. https://doi.org/10.1163/156939301X00661 DOI: https://doi.org/10.1163/156939301X00661
Constable, S. C., & Cox, C. S. (1996). Marine controlled source electromagnetic sounding—II: The PEGASUS experiment. Journal of Geophysical Research, 101(B3), 5519–5530. DOI: https://doi.org/10.1029/95JB03738
Constable, S., & Key, K. (2008). Marine electromagnetic methods for hydrocarbon exploration Part B: Marine CSEM methods and instruments [Course notes]. SEG Continuing Education Shortcourse.
Constable, S., & Srnka, L. J. (2007). An introduction to marine controlled-source electromagnetic methods for hydrocarbon exploration. Geophysics, 72(2), WA3–WA12. DOI: https://doi.org/10.1190/1.2432483
Constable, S., & Weiss, C. J. (2006). Mapping thin resistors and hydrocarbons with marine EM methods: Insights from 1D modeling. Geophysics, 71(2), G43–G51. https://doi.org/10.1190/1.2187748 DOI: https://doi.org/10.1190/1.2187748
Correa, J. L., & Menezes, P. T. (2019). Marlim R3D: A realistic model for controlled-source electromagnetic simulations—Phase 2: The controlled-source electromagnetic data set. Geophysics, 84(5), E293–E299. https://doi.org/10.1190/geo2018-0452.1 DOI: https://doi.org/10.1190/geo2018-0452.1
Eidesmo, T., Ellingsrud, S., MacGregor, L. M., Constable, S., Sinha, M. C., Johansen, S. E., Kong, F. N., & Westerdahl, H. (2002). Sea Bed Logging (CSEM), a new method for remote and direct identification of hydrocarbon filled layers in deepwater areas. First Break, 20(3), 144–152.
Ellingsrud, S., Eidesmo, T., Johansen, S. E., Sinha, M. C., MacGregor, L. M., & Constable, S. (2002). Remote sensing of hydrocarbon layers by Sea Bed Logging (CSEM): Results from a cruise offshore Angola. The Leading Edge, 21(10), 972–982. DOI: https://doi.org/10.1190/1.1518433
Figueiredo, A. M. F., & Mohriak, W. U. A. (1984). Tectônica salífera e as acumulações de petróleo da Bacia de Campos. In Anais do 33º Congresso Brasileiro de Geologia (pp. 1380–1394). Sociedade Brasileira de Geologia.
Guardado, L. R., Spadini, A. R., Brandão, J. S. L., & Mello, M. R. (2000). Petroleum system of the Campos Basin, Brazil. In M. R. Mello & B. J. Katz (Eds.), Petroleum systems of South Atlantic margins (AAPG Memoir 73, pp. 317–324). American Association of Petroleum Geologists. DOI: https://doi.org/10.1306/M73705C22
Helwig, S. L., Wood, W., & Gloux, B. (2019). Vertical-vertical controlled-source electromagnetic instrumentation and acquisition. Geophysical Prospecting, 67(6), 1582–1594. https://doi.org/10.1111/1365-2478.12771 DOI: https://doi.org/10.1111/1365-2478.12771
Holten, T., Flekkøy, E. G., Singer, B., Blixt, E. M., Hanssen, A., & Måløy, K. J. (2009). Vertical source vertical receiver, electromagnetic technique for offshore hydrocarbon exploration. First Break, 27(5). https://doi.org/10.3997/1365-2397.27.1299.28934 DOI: https://doi.org/10.3997/1365-2397.27.1299.28934
Hoversten, M. G., Morrison, H. F., & Constable, S. C. (1998). Marine EM for petroleum exploration, Part II: Numerical analysis of subsalt resolution. Geophysics, 63(3), 826–840. DOI: https://doi.org/10.1190/1.1444394
Johansen, S. E., Amundsen, H. E. F., Røsten, T., Ellingsrud, S., Eidesmo, T., & Bhuiyan, A. H. (2005). Subsurface hydrocarbons detected by electromagnetic sounding. First Break, 23(3), 31–36. DOI: https://doi.org/10.3997/1365-2397.2005005
Kjerstad, J. (2010). Device for a vertical electromagnetic field component receiver (Patent No. WO2010/041959). World Intellectual Property Organization. PCT/NO2009/000352.
Kong, F. N., Westerdahl, H., Ellingsrud, S., Eidesmo, T., & Johansen, S. E. (2002, May 13). SeaBed Logging: A possible direct hydrocarbon indicator for deep sea prospects using EM energy. Oil & Gas Journal.
MacGregor, L. M., & Sinha, M. C. (2000). Use of marine controlled source electromagnetic sounding for sub-basalt exploration. Geophysical Prospecting, 48(6), 1091–1106. https://doi.org/10.1046/j.1365-2478.2000.00227.x DOI: https://doi.org/10.1046/j.1365-2478.2000.00227.x
Martínez, G. C., Hanson, G., Tariq, H. H., der Toorn, J. V., Souza, J. A., van der Molen, M., Okprekyi, O., Dandapani, R., & Shah, Z. A. (2021). Chapter 9—Well-to-seismic tie. In E. Onajite (Ed.), Applied techniques to integrated oil and gas reservoir characterization (pp. 249–271). Elsevier. https://doi.org/10.1016/B978-0-12-817236-0.00009-1 DOI: https://doi.org/10.1016/B978-0-12-817236-0.00009-1
Menezes, P. T., Correa, J. L., Alvim, L. M., Vianna, A. R., & Sansonowski, R. C. (2021). Time-lapse CSEM monitoring: Correlating the anomalous transverse resistance with SoPhiH maps. Energies, 14(21), Article 7159. https://doi.org/10.3390/en14217159 DOI: https://doi.org/10.3390/en14217159
Nascimento, T. M., Menezes, P. T., & Braga, I. L. (2014). High-resolution acoustic impedance inversion to characterize turbidites at Marlim Field, Campos Basin, Brazil. Interpretation, 2(3), T143–T153. https://doi.org/10.1190/INT-2013-0137.1 DOI: https://doi.org/10.1190/INT-2013-0137.1
Schreiner, S., Souza, M. B. F. M., Migliorelli, J. P., Figueiredo, J. R. A. G., Pacheco, C. E. P., Vasconcelos, S. C., & Silva, F. T. (2014). Mapa batimétrico da Bacia de Campos. In R. O. Kowsmann (Ed.), Geologia e geomorfologia (Habitats, Vol. 1, pp. 67–70). Elsevier. https://doi.org/10.1016/B978-85-352-6937-6.50011-2 DOI: https://doi.org/10.1016/B978-85-352-6937-6.50011-2
Scotese, C. R. (2001). Atlas of Earth history. PALEOMAP Project, University of Texas at Arlington.
Ward, S. H., & Hohmann, G. W. (1987). Electromagnetic theory for geophysical applications. In M. N. Nabighian (Ed.), Electromagnetic methods in applied geophysics—Theory (Vol. 1, pp. 130–311). Society of Exploration Geophysicists. https://doi.org/10.1190/1.9781560802631.ch4 DOI: https://doi.org/10.1190/1.9781560802631.ch4
Zhdanov, M. S., Lee, S. K., & Yoshioka, K. (2006). Integral equation method for 3D modeling of electromagnetic fields in complex structures with inhomogeneous background conductivity. Geophysics, 71(6), G333–G345. https://doi.org/10.1190/1.2358403 DOI: https://doi.org/10.1190/1.2358403
Ziolkowski, A., & Slob, E. (2019). Introduction to controlled-source electromagnetic methods. Cambridge University Press. DOI: https://doi.org/10.1017/9781107415904
