ANÁLISE COMPARATIVA DO DESEMPENHO DE CAMPANHAS COM O MÉTODO ELETROMAGNÉTICO DE FONTE CONTROLADA E PROJETO DE LEVANTAMENTOS - ESTUDO DE CASO DO CAMPO PETROLÍFERO DE MARLIM
DOI:
https://doi.org/10.56238/arev7n11-302Palavras-chave:
Monitoramento de Reservatório, Método Eletromagnético, Modelagem Multifísica, Campo Petrolífero de Marlim, Domínio da FrequênciaResumo
O método eletromagnético de fonte controlada (CSEM) tem recebido considerável atenção e sua principal aplicação é o monitoramento de reservatórios de hidrocarbonetos, devido à sua sensibilidade na verificação de contrastes de resistividade elétrica, além de ser ligeiramente menos prejudicial à biota marinha do que os métodos sísmicos tradicionais. Neste artigo, foi construída uma modelagem multifísica do método eletromagnético de fonte controlada marinho (MCSEM) e do método eletromagnético de fonte controlada vertical-vertical (VVCSEM) utilizando um modelo geológico realista do campo petrolífero de Marlim, Bacia de Campos - Brasil. Marlim é um campo petrolífero pertencente ao Complexo Marlim, localizado na margem passiva brasileira, que apresenta grandes intervalos de rochas carbonáticas que se misturam lateralmente com sequências arenosas. A bacia é dominada por folhelhos intercalados com arenitos turbidíticos em maiores profundidades, muito semelhante ao pacote estratigráfico encontrado na Bacia Potiguar - Brasil. Uma comparação entre as duas metodologias CSEM é apresentada, bem como uma proposta de projeto de levantamento sísmico. Os métodos MCSEM e VVCSEM demonstraram ser eficientes na detecção das respostas do reservatório de hidrocarbonetos, mesmo na presença de uma camada considerável de sal. O VVCSEM apresentou melhor resposta de imagem em algumas situações geológicas nas quais o MCSEM praticamente não identificou a presença do reservatório.
Downloads
Referências
Allouche, J., & Shallit, J. (1999). The ubiquitous Prouhet-Thue-Morse sequence. In C. Ding, T. Helleseth, & H. Niederreiter (Eds.), Sequences and their applications (pp. 1–16). Springer London. https://doi.org/10.1007/978-1-4471-0551-0_1 DOI: https://doi.org/10.1007/978-1-4471-0551-0_1
Barsukov, P., Fainberg, E. B., & Singer, B. (2007). A method for hydrocarbon reservoir mapping and apparatus for use when performing the method (Patent No. WO2007/053025). World Intellectual Property Organization. PCT/NO2006/000372.
Barsukov, P. O., Fainberg, E. B., & Singer, B. (2008). A method for mapping hydrocarbon reservoirs in shallow waters and also apparatus for use practising the method (Patent No. WO2008/066389). World Intellectual Property Organization. PCT/NO2007/000416.
Carvalho, B. R., & Menezes, P. T. (2017). Marlim R3D: A realistic model for CSEM simulations—Phase 1: Model building. Brazilian Journal of Geology, 47(4), 633–644. https://doi.org/10.1590/2317-4889201720170088 DOI: https://doi.org/10.1590/2317-4889201720170088
Castro, R. D., & Picolini, J. P. (2015). Principais aspectos da geologia regional da Bacia de Campos. In R. O. Kowsmann (Ed.), Geologia e geomorfologia (Habitats, Vol. 1, pp. 1–12). Elsevier. https://doi.org/10.1016/B978-85-352-6937-6.50008-2 DOI: https://doi.org/10.1016/B978-85-352-6937-6.50008-2
Chave, A. D., & Cox, C. S. (1982). Controlled electromagnetic sources for measuring electrical conductivity beneath the oceans: 1. Forward problem and model study. Journal of Geophysical Research, 87(B7), 5327–5338. https://doi.org/10.1029/JB087iB07p05327 DOI: https://doi.org/10.1029/JB087iB07p05327
Clemens, M., & Weiland, T. (2001). Discrete electromagnetism with the finite integration technique. Journal of Electromagnetic Waves and Applications, 15(1), 79–80. https://doi.org/10.1163/156939301X00661 DOI: https://doi.org/10.1163/156939301X00661
Constable, S. C., & Cox, C. S. (1996). Marine controlled source electromagnetic sounding—II: The PEGASUS experiment. Journal of Geophysical Research, 101(B3), 5519–5530. DOI: https://doi.org/10.1029/95JB03738
Constable, S., & Key, K. (2008). Marine electromagnetic methods for hydrocarbon exploration Part B: Marine CSEM methods and instruments [Course notes]. SEG Continuing Education Shortcourse.
Constable, S., & Srnka, L. J. (2007). An introduction to marine controlled-source electromagnetic methods for hydrocarbon exploration. Geophysics, 72(2), WA3–WA12. DOI: https://doi.org/10.1190/1.2432483
Constable, S., & Weiss, C. J. (2006). Mapping thin resistors and hydrocarbons with marine EM methods: Insights from 1D modeling. Geophysics, 71(2), G43–G51. https://doi.org/10.1190/1.2187748 DOI: https://doi.org/10.1190/1.2187748
Correa, J. L., & Menezes, P. T. (2019). Marlim R3D: A realistic model for controlled-source electromagnetic simulations—Phase 2: The controlled-source electromagnetic data set. Geophysics, 84(5), E293–E299. https://doi.org/10.1190/geo2018-0452.1 DOI: https://doi.org/10.1190/geo2018-0452.1
Eidesmo, T., Ellingsrud, S., MacGregor, L. M., Constable, S., Sinha, M. C., Johansen, S. E., Kong, F. N., & Westerdahl, H. (2002). Sea Bed Logging (CSEM), a new method for remote and direct identification of hydrocarbon filled layers in deepwater areas. First Break, 20(3), 144–152.
Ellingsrud, S., Eidesmo, T., Johansen, S. E., Sinha, M. C., MacGregor, L. M., & Constable, S. (2002). Remote sensing of hydrocarbon layers by Sea Bed Logging (CSEM): Results from a cruise offshore Angola. The Leading Edge, 21(10), 972–982. DOI: https://doi.org/10.1190/1.1518433
Figueiredo, A. M. F., & Mohriak, W. U. A. (1984). Tectônica salífera e as acumulações de petróleo da Bacia de Campos. In Anais do 33º Congresso Brasileiro de Geologia (pp. 1380–1394). Sociedade Brasileira de Geologia.
Guardado, L. R., Spadini, A. R., Brandão, J. S. L., & Mello, M. R. (2000). Petroleum system of the Campos Basin, Brazil. In M. R. Mello & B. J. Katz (Eds.), Petroleum systems of South Atlantic margins (AAPG Memoir 73, pp. 317–324). American Association of Petroleum Geologists. DOI: https://doi.org/10.1306/M73705C22
Helwig, S. L., Wood, W., & Gloux, B. (2019). Vertical-vertical controlled-source electromagnetic instrumentation and acquisition. Geophysical Prospecting, 67(6), 1582–1594. https://doi.org/10.1111/1365-2478.12771 DOI: https://doi.org/10.1111/1365-2478.12771
Holten, T., Flekkøy, E. G., Singer, B., Blixt, E. M., Hanssen, A., & Måløy, K. J. (2009). Vertical source vertical receiver, electromagnetic technique for offshore hydrocarbon exploration. First Break, 27(5). https://doi.org/10.3997/1365-2397.27.1299.28934 DOI: https://doi.org/10.3997/1365-2397.27.1299.28934
Hoversten, M. G., Morrison, H. F., & Constable, S. C. (1998). Marine EM for petroleum exploration, Part II: Numerical analysis of subsalt resolution. Geophysics, 63(3), 826–840. DOI: https://doi.org/10.1190/1.1444394
Johansen, S. E., Amundsen, H. E. F., Røsten, T., Ellingsrud, S., Eidesmo, T., & Bhuiyan, A. H. (2005). Subsurface hydrocarbons detected by electromagnetic sounding. First Break, 23(3), 31–36. DOI: https://doi.org/10.3997/1365-2397.2005005
Kjerstad, J. (2010). Device for a vertical electromagnetic field component receiver (Patent No. WO2010/041959). World Intellectual Property Organization. PCT/NO2009/000352.
Kong, F. N., Westerdahl, H., Ellingsrud, S., Eidesmo, T., & Johansen, S. E. (2002, May 13). SeaBed Logging: A possible direct hydrocarbon indicator for deep sea prospects using EM energy. Oil & Gas Journal.
MacGregor, L. M., & Sinha, M. C. (2000). Use of marine controlled source electromagnetic sounding for sub-basalt exploration. Geophysical Prospecting, 48(6), 1091–1106. https://doi.org/10.1046/j.1365-2478.2000.00227.x DOI: https://doi.org/10.1046/j.1365-2478.2000.00227.x
Martínez, G. C., Hanson, G., Tariq, H. H., der Toorn, J. V., Souza, J. A., van der Molen, M., Okprekyi, O., Dandapani, R., & Shah, Z. A. (2021). Chapter 9—Well-to-seismic tie. In E. Onajite (Ed.), Applied techniques to integrated oil and gas reservoir characterization (pp. 249–271). Elsevier. https://doi.org/10.1016/B978-0-12-817236-0.00009-1 DOI: https://doi.org/10.1016/B978-0-12-817236-0.00009-1
Menezes, P. T., Correa, J. L., Alvim, L. M., Vianna, A. R., & Sansonowski, R. C. (2021). Time-lapse CSEM monitoring: Correlating the anomalous transverse resistance with SoPhiH maps. Energies, 14(21), Article 7159. https://doi.org/10.3390/en14217159 DOI: https://doi.org/10.3390/en14217159
Nascimento, T. M., Menezes, P. T., & Braga, I. L. (2014). High-resolution acoustic impedance inversion to characterize turbidites at Marlim Field, Campos Basin, Brazil. Interpretation, 2(3), T143–T153. https://doi.org/10.1190/INT-2013-0137.1 DOI: https://doi.org/10.1190/INT-2013-0137.1
Schreiner, S., Souza, M. B. F. M., Migliorelli, J. P., Figueiredo, J. R. A. G., Pacheco, C. E. P., Vasconcelos, S. C., & Silva, F. T. (2014). Mapa batimétrico da Bacia de Campos. In R. O. Kowsmann (Ed.), Geologia e geomorfologia (Habitats, Vol. 1, pp. 67–70). Elsevier. https://doi.org/10.1016/B978-85-352-6937-6.50011-2 DOI: https://doi.org/10.1016/B978-85-352-6937-6.50011-2
Scotese, C. R. (2001). Atlas of Earth history. PALEOMAP Project, University of Texas at Arlington.
Ward, S. H., & Hohmann, G. W. (1987). Electromagnetic theory for geophysical applications. In M. N. Nabighian (Ed.), Electromagnetic methods in applied geophysics—Theory (Vol. 1, pp. 130–311). Society of Exploration Geophysicists. https://doi.org/10.1190/1.9781560802631.ch4 DOI: https://doi.org/10.1190/1.9781560802631.ch4
Zhdanov, M. S., Lee, S. K., & Yoshioka, K. (2006). Integral equation method for 3D modeling of electromagnetic fields in complex structures with inhomogeneous background conductivity. Geophysics, 71(6), G333–G345. https://doi.org/10.1190/1.2358403 DOI: https://doi.org/10.1190/1.2358403
Ziolkowski, A., & Slob, E. (2019). Introduction to controlled-source electromagnetic methods. Cambridge University Press. DOI: https://doi.org/10.1017/9781107415904