APRENDIZADO DE MÁQUINA NA DETECÇÃO DE DOENÇA ARTERIAL CORONARIANA: UMA REVISÃO TÉCNICO-CIENTÍFICA

Autores

  • Helio de Araujo Ribeiro Autor
  • Fabiano Bezerra Menegídio Autor
  • Robson Rodrigues da Silva Autor

DOI:

https://doi.org/10.56238/arev7n10-039

Palavras-chave:

Aprendizado de Máquina, Doença Arterial Coronariana, Aterosclerose

Resumo

As doenças cardiovasculares continuam sendo a principal causa de morte em todo o mundo, tornando os avanços na prevenção essenciais. Esta revisão resume o trabalho recente sobre aprendizado de máquina (ML) aplicado a dados clínicos estruturados para detectar ou prever doença arterial coronariana (DAC). Esta revisão narrativa foi conduzida sob a estrutura PRISMA 2020. Buscas no PubMed, IEEE Xplore e SciELO (janeiro de 2020 a abril de 2025) renderam 3.780 registros. Após triagem e avaliação do texto completo, 10 artigos foram incluídos: sete estudos primários e três revisões. Os tamanhos das amostras variaram de 303 a 70.000 indivíduos. Algoritmos e conjuntos baseados em árvore apresentaram as melhores pontuações, com precisão entre 0,82 e 0,99 e AUROC de 0,86 a 0,96. A explicabilidade com SHAP foi aplicada em quatro estudos, e um emparelhou SHAP com LIME. Um artigo adicionou a contribuição de um cardiologista ao ciclo de decisão, aumentando a precisão de 0,7829 para 0,8302. Apenas um artigo avaliou seus modelos em conjuntos de dados externos e observou quedas de desempenho. A calibração raramente foi abordada. Apenas uma investigação relatou uma pontuação de Brier de 0,14 e uma inclinação de 0,93. Modelos de ML treinados exclusivamente com variáveis ​​demográficas, laboratoriais e clínicas coletadas rotineiramente demonstram forte capacidade de classificação para DAC, apoiando seu uso como auxiliar de triagem não invasiva e suporte à decisão. Ensaios prospectivos, validação externa e relatórios detalhados de calibração são necessários antes da adoção clínica.

Downloads

Os dados de download ainda não estão disponíveis.

Referências

American Psychological Association. (2020). Publication manual of the American Psychological Association (7th ed.). https://doi.org/10.1037/0000165-000 DOI: https://doi.org/10.1037/0000165-000

Azari Jafari, S., & et al. (2022). Unsupervised phenotyping of coronary artery disease. Journal of Biomedical Informatics, 127, 104002. https://doi.org/10.1016/j.jbi.2022.104002 DOI: https://doi.org/10.1016/j.jbi.2022.104002

Chen, R., Zhang, Y., He, M., & et al. (2024). Continuous cardiovascular-risk monitoring with wearable sensors and deep neural networks: A prospective cohort study. IEEE Journal of Biomedical and Health Informatics, 28(1), 45–55. https://doi.org/10.1109/JBHI.2023.3311623

D’Agostino, R. B., Sr., Vasan, R. S., Pencina, M. J., & et al. (2008). General cardiovascular risk profile for use in primary care: The Framingham Heart Study. Circulation, 117(6), 743–753. https://doi.org/10.1161/CIRCULATIONAHA.107.699579 DOI: https://doi.org/10.1161/CIRCULATIONAHA.107.699579

Esteva, A., Robicquet, A., Ramsundar, B., & et al. (2019). A guide to deep learning in healthcare. Nature Medicine, 25(1), 24–29. https://doi.org/10.1038/s41591-018-0316-z DOI: https://doi.org/10.1038/s41591-018-0316-z

European Parliament. (2024). EU Artificial Intelligence Act: Final compromise text. https://eur-lex.europa.eu/eli/reg/2024/1689/oj

Goff, D. C., Jr., Lloyd-Jones, D. M., Bennett, G., & et al. (2014). 2013 ACC/AHA guideline on the assessment of cardiovascular risk. Circulation, 129(Suppl. 2), S49–S73. https://doi.org/10.1161/01.cir.0000437741.48606.98 DOI: https://doi.org/10.1161/01.cir.0000437741.48606.98

Jose, R., Thomas, A., Guo, J., Steinberg, R., & Toma, M. (2024). Evaluating machine-learning models for prediction of coronary artery disease. Global Translational Medicine, 3(1), Article e2669. https://doi.org/10.36922/gtm.2669 DOI: https://doi.org/10.36922/gtm.2669

Kakadiaris, I. A., Vrigkas, M., & et al. (2018). Machine learning outperforms ACC/AHA CVD risk calculator in MESA. Journal of the American Heart Association, 7(22), Article e009476. https://doi.org/10.1161/JAHA.118.009476 DOI: https://doi.org/10.1161/JAHA.118.009476

Kang, Y., Guo, N., Cheng, G., & et al. (2022). Deep-learning-based quantitative coronary CT angiography for prediction of obstructive disease: Multicenter validation. Radiology, 304(2), 303–312. https://doi.org/10.1148/radiol.2021212667

Ling, H., Guo, Z. Y., Tan, L. L., Guan, R. C., Chen, J. B., & Song, C. L. (2021). Machine learning in diagnosis of coronary artery disease. Chinese Medical Journal, 134(4), 401–403. https://doi.org/10.1097/CM9.0000000000001202 DOI: https://doi.org/10.1097/CM9.0000000000001202

Liu, T., Krentz, A., Lu, L., & Curcin, V. (2024). Machine-learning-based prediction models for cardiovascular disease risk using electronic health records: Systematic review and meta-analysis. European Heart Journal - Digital Health, 6(1), 7–22. https://doi.org/10.1093/ehjdh/ztae080 DOI: https://doi.org/10.1093/ehjdh/ztae080

Lundberg, S. M., Nair, B., Voglino, J., & et al. (2018). Explainable machine-learning predictions for the prevention of hypoxaemia during surgery. Nature Biomedical Engineering, 2(10), 749–760. https://doi.org/10.1038/s41551-018-0304-0 DOI: https://doi.org/10.1038/s41551-018-0304-0

Mitchell, T. (1997). Machine learning. McGraw-Hill.

Muhammad, D., Ahmed, I., Ahmad, M. O., & Bendechache, M. (2024). Randomized explainable machine-learning models for efficient medical diagnosis. IEEE Journal of Biomedical and Health Informatics. Advance online publication. https://doi.org/10.1109/JBHI.2024.3401234 DOI: https://doi.org/10.1109/JBHI.2024.3491593

Omkari, D. Y., & Shaik, K. (2024). An integrated two-layered voting framework for coronary artery disease prediction using machine-learning classifiers. IEEE Access, 12, 56275–56290. https://doi.org/10.1109/ACCESS.2024.3389707 DOI: https://doi.org/10.1109/ACCESS.2024.3389707

Panch, T., Mattie, H., & Celi, L. A. (2019). The inconvenient truth about artificial intelligence in healthcare. NPJ Digital Medicine, 2, Article 77. https://doi.org/10.1038/s41746-019-0155-4 DOI: https://doi.org/10.1038/s41746-019-0155-4

Provost, C., Broughan, J., McCombe, G., & et al. (2025). Artificial-intelligence models for cardiovascular-disease risk prediction in primary and ambulatory care: A scoping review. medRxiv. https://doi.org/10.1101/2025.03.21.25324379 DOI: https://doi.org/10.1101/2025.03.21.25324379

Rasmy, L., Xiang, Y., Xie, Z., Tao, C., & Zhi, D. (2021). Med-BERT: Pre-trained contextualized embeddings on large-scale structured EHRs for disease prediction. NPJ Digital Medicine, 4, Article 86. https://doi.org/10.1038/s41746-021-00455-y DOI: https://doi.org/10.1038/s41746-021-00455-y

Rehman, S. U., Anwar, S. M., & Khawaja, B. A. (2022). Benchmarking k-nearest neighbors and logistic regression against ensemble methods for CAD detection. IEEE Journal of Biomedical and Health Informatics, 26(8), 4021–4031. https://doi.org/10.1109/JBHI.2022.3162345

Saeedbakhsh, S., Sattari, M., Mohammadi, M., Najafian, J., & Mohammadi, F. (2023). Diagnosis of coronary artery disease based on machine-learning algorithms: Support vector machine, artificial neural network and random forest. Advanced Biomedical Research, 12, Article 51. https://doi.org/10.4103/abr.abr_383_21 DOI: https://doi.org/10.4103/abr.abr_383_21

Samaras, A. D., Moustakidis, S., Apostolopoulos, I. D., Papandrianos, N., & Papageorgiou, E. (2023). Classification models for assessing coronary artery disease instances using clinical and biometric data: An explainable man-in-the-loop approach. Scientific Reports, 13, Article 6668. https://doi.org/10.1038/s41598-023-33500-9 DOI: https://doi.org/10.1038/s41598-023-33500-9

Silva, C. A. O., Morillo, C. A., Leite-Castro, C., González-Otero, R., Bessani, M., González, R., & et al. (2022). Machine learning for atrial fibrillation risk prediction in patients with sleep apnea and coronary artery disease. Frontiers in Cardiovascular Medicine, 9, Article 1050409. https://doi.org/10.3389/fcvm.2022.1050409 DOI: https://doi.org/10.3389/fcvm.2022.1050409

Van Calster, B., McLernon, D. J., Van Smeden, M., & et al. (2019). Calibration: The Achilles heel of predictive analytics. BMC Medicine, 17, Article 230. https://doi.org/10.1186/s12916-019-1466-7 DOI: https://doi.org/10.1186/s12916-019-1466-7

Wang, J., Xue, Q., Zhang, C. W. J., Wong, K. K. L., & Liu, Z. (2024). Explainable coronary artery disease prediction model based on AutoGluon from AutoML framework. Frontiers in Cardiovascular Medicine, 11, Article 1360548. https://doi.org/10.3389/fcvm.2024.1360548 DOI: https://doi.org/10.3389/fcvm.2024.1360548

World Health Organization. (2021a). Cardiovascular diseases (CVDs): Fact sheet. https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases

World Health Organization. (2021b). Ethics and governance of artificial intelligence for health. https://iris.who.int/bitstream/handle/10665/341996/9789240029200-eng.pdf

Wynants, L., Van Calster, B., Collins, G. S., & Riley, R. D. (2020). Prediction models for diagnosis and prognosis of COVID-19 infection: Systematic review and critical appraisal. BMJ, 369, Article m1328. https://doi.org/10.1136/bmj.m1328 DOI: https://doi.org/10.1136/bmj.m1328

Yu, M., & et al. (2022). Reinforcement learning for dynamic treatment regimes in cardiovascular care. Frontiers in Cardiovascular Medicine, 9, Article 1012456. https://doi.org/10.3389/fcvm.2022.1012456

Zhang, Y., Chen, G., Xu, Z., & et al. (2024). FedCVD: A federated learning benchmark for cardiovascular disease detection. arXiv. https://doi.org/10.48550/arXiv.2411.07050

Downloads

Publicado

2025-10-03

Edição

Seção

Artigos

Como Citar

RIBEIRO, Helio de Araujo; MENEGÍDIO, Fabiano Bezerra; DA SILVA, Robson Rodrigues. APRENDIZADO DE MÁQUINA NA DETECÇÃO DE DOENÇA ARTERIAL CORONARIANA: UMA REVISÃO TÉCNICO-CIENTÍFICA. ARACÊ , [S. l.], v. 7, n. 10, p. e8638 , 2025. DOI: 10.56238/arev7n10-039. Disponível em: https://periodicos.newsciencepubl.com/arace/article/view/8638. Acesso em: 5 dez. 2025.