MACHINE LEARNING IN CORONARY ARTERY DISEASE DETECTION: A TECHNICAL-SCIENTIFIC REVIEW

Authors

  • Helio de Araujo Ribeiro Author
  • Fabiano Bezerra Menegídio Author
  • Robson Rodrigues da Silva Author

DOI:

https://doi.org/10.56238/arev7n10-039

Keywords:

Machine Learning, Coronary Artery Disease, Atherosclerosis

Abstract

Cardiovascular diseases remain the leading cause of death worldwide, making advances in prevention essential. This review summarizes recent work on machine learning (ML) applied to structured clinical data for detecting or predicting coronary artery disease (CAD). This narrative review was conducted under the PRISMA 2020 framework. Searches in PubMed, IEEE Xplore, and SciELO (Jan 2020 to Apr 2025) yielded 3,780 records. After screening and full-text appraisal, 10 papers were included: seven primary studies and three reviews. Sample sizes ranged from 303 to 70,000 individuals. Tree based algorithms and ensembles posted the best scores, with accuracy between 0.82 and 0.99 and AUROC from 0.86 to 0.96. Explainability with SHAP was applied in four studies, and one paired SHAP with LIME. One paper added a cardiologist’s input to the decision loop, raising accuracy from 0.7829 to 0.8302. Only one article evaluated their models on external datasets and noted performance drops. Calibration was rarely addressed. Just one investigation reported a Brier score of 0.14 and a slope of 0.93. ML models trained solely on routinely collected demographic, laboratory, and clinical variables show strong classification ability for CAD, supporting use as a non-invasive screening aid and decision support. Prospective trials, external validation, and detailed calibration reports are required before clinical adoption.

Downloads

Download data is not yet available.

References

American Psychological Association. (2020). Publication manual of the American Psychological Association (7th ed.). https://doi.org/10.1037/0000165-000 DOI: https://doi.org/10.1037/0000165-000

Azari Jafari, S., & et al. (2022). Unsupervised phenotyping of coronary artery disease. Journal of Biomedical Informatics, 127, 104002. https://doi.org/10.1016/j.jbi.2022.104002 DOI: https://doi.org/10.1016/j.jbi.2022.104002

Chen, R., Zhang, Y., He, M., & et al. (2024). Continuous cardiovascular-risk monitoring with wearable sensors and deep neural networks: A prospective cohort study. IEEE Journal of Biomedical and Health Informatics, 28(1), 45–55. https://doi.org/10.1109/JBHI.2023.3311623

D’Agostino, R. B., Sr., Vasan, R. S., Pencina, M. J., & et al. (2008). General cardiovascular risk profile for use in primary care: The Framingham Heart Study. Circulation, 117(6), 743–753. https://doi.org/10.1161/CIRCULATIONAHA.107.699579 DOI: https://doi.org/10.1161/CIRCULATIONAHA.107.699579

Esteva, A., Robicquet, A., Ramsundar, B., & et al. (2019). A guide to deep learning in healthcare. Nature Medicine, 25(1), 24–29. https://doi.org/10.1038/s41591-018-0316-z DOI: https://doi.org/10.1038/s41591-018-0316-z

European Parliament. (2024). EU Artificial Intelligence Act: Final compromise text. https://eur-lex.europa.eu/eli/reg/2024/1689/oj

Goff, D. C., Jr., Lloyd-Jones, D. M., Bennett, G., & et al. (2014). 2013 ACC/AHA guideline on the assessment of cardiovascular risk. Circulation, 129(Suppl. 2), S49–S73. https://doi.org/10.1161/01.cir.0000437741.48606.98 DOI: https://doi.org/10.1161/01.cir.0000437741.48606.98

Jose, R., Thomas, A., Guo, J., Steinberg, R., & Toma, M. (2024). Evaluating machine-learning models for prediction of coronary artery disease. Global Translational Medicine, 3(1), Article e2669. https://doi.org/10.36922/gtm.2669 DOI: https://doi.org/10.36922/gtm.2669

Kakadiaris, I. A., Vrigkas, M., & et al. (2018). Machine learning outperforms ACC/AHA CVD risk calculator in MESA. Journal of the American Heart Association, 7(22), Article e009476. https://doi.org/10.1161/JAHA.118.009476 DOI: https://doi.org/10.1161/JAHA.118.009476

Kang, Y., Guo, N., Cheng, G., & et al. (2022). Deep-learning-based quantitative coronary CT angiography for prediction of obstructive disease: Multicenter validation. Radiology, 304(2), 303–312. https://doi.org/10.1148/radiol.2021212667

Ling, H., Guo, Z. Y., Tan, L. L., Guan, R. C., Chen, J. B., & Song, C. L. (2021). Machine learning in diagnosis of coronary artery disease. Chinese Medical Journal, 134(4), 401–403. https://doi.org/10.1097/CM9.0000000000001202 DOI: https://doi.org/10.1097/CM9.0000000000001202

Liu, T., Krentz, A., Lu, L., & Curcin, V. (2024). Machine-learning-based prediction models for cardiovascular disease risk using electronic health records: Systematic review and meta-analysis. European Heart Journal - Digital Health, 6(1), 7–22. https://doi.org/10.1093/ehjdh/ztae080 DOI: https://doi.org/10.1093/ehjdh/ztae080

Lundberg, S. M., Nair, B., Voglino, J., & et al. (2018). Explainable machine-learning predictions for the prevention of hypoxaemia during surgery. Nature Biomedical Engineering, 2(10), 749–760. https://doi.org/10.1038/s41551-018-0304-0 DOI: https://doi.org/10.1038/s41551-018-0304-0

Mitchell, T. (1997). Machine learning. McGraw-Hill.

Muhammad, D., Ahmed, I., Ahmad, M. O., & Bendechache, M. (2024). Randomized explainable machine-learning models for efficient medical diagnosis. IEEE Journal of Biomedical and Health Informatics. Advance online publication. https://doi.org/10.1109/JBHI.2024.3401234 DOI: https://doi.org/10.1109/JBHI.2024.3491593

Omkari, D. Y., & Shaik, K. (2024). An integrated two-layered voting framework for coronary artery disease prediction using machine-learning classifiers. IEEE Access, 12, 56275–56290. https://doi.org/10.1109/ACCESS.2024.3389707 DOI: https://doi.org/10.1109/ACCESS.2024.3389707

Panch, T., Mattie, H., & Celi, L. A. (2019). The inconvenient truth about artificial intelligence in healthcare. NPJ Digital Medicine, 2, Article 77. https://doi.org/10.1038/s41746-019-0155-4 DOI: https://doi.org/10.1038/s41746-019-0155-4

Provost, C., Broughan, J., McCombe, G., & et al. (2025). Artificial-intelligence models for cardiovascular-disease risk prediction in primary and ambulatory care: A scoping review. medRxiv. https://doi.org/10.1101/2025.03.21.25324379 DOI: https://doi.org/10.1101/2025.03.21.25324379

Rasmy, L., Xiang, Y., Xie, Z., Tao, C., & Zhi, D. (2021). Med-BERT: Pre-trained contextualized embeddings on large-scale structured EHRs for disease prediction. NPJ Digital Medicine, 4, Article 86. https://doi.org/10.1038/s41746-021-00455-y DOI: https://doi.org/10.1038/s41746-021-00455-y

Rehman, S. U., Anwar, S. M., & Khawaja, B. A. (2022). Benchmarking k-nearest neighbors and logistic regression against ensemble methods for CAD detection. IEEE Journal of Biomedical and Health Informatics, 26(8), 4021–4031. https://doi.org/10.1109/JBHI.2022.3162345

Saeedbakhsh, S., Sattari, M., Mohammadi, M., Najafian, J., & Mohammadi, F. (2023). Diagnosis of coronary artery disease based on machine-learning algorithms: Support vector machine, artificial neural network and random forest. Advanced Biomedical Research, 12, Article 51. https://doi.org/10.4103/abr.abr_383_21 DOI: https://doi.org/10.4103/abr.abr_383_21

Samaras, A. D., Moustakidis, S., Apostolopoulos, I. D., Papandrianos, N., & Papageorgiou, E. (2023). Classification models for assessing coronary artery disease instances using clinical and biometric data: An explainable man-in-the-loop approach. Scientific Reports, 13, Article 6668. https://doi.org/10.1038/s41598-023-33500-9 DOI: https://doi.org/10.1038/s41598-023-33500-9

Silva, C. A. O., Morillo, C. A., Leite-Castro, C., González-Otero, R., Bessani, M., González, R., & et al. (2022). Machine learning for atrial fibrillation risk prediction in patients with sleep apnea and coronary artery disease. Frontiers in Cardiovascular Medicine, 9, Article 1050409. https://doi.org/10.3389/fcvm.2022.1050409 DOI: https://doi.org/10.3389/fcvm.2022.1050409

Van Calster, B., McLernon, D. J., Van Smeden, M., & et al. (2019). Calibration: The Achilles heel of predictive analytics. BMC Medicine, 17, Article 230. https://doi.org/10.1186/s12916-019-1466-7 DOI: https://doi.org/10.1186/s12916-019-1466-7

Wang, J., Xue, Q., Zhang, C. W. J., Wong, K. K. L., & Liu, Z. (2024). Explainable coronary artery disease prediction model based on AutoGluon from AutoML framework. Frontiers in Cardiovascular Medicine, 11, Article 1360548. https://doi.org/10.3389/fcvm.2024.1360548 DOI: https://doi.org/10.3389/fcvm.2024.1360548

World Health Organization. (2021a). Cardiovascular diseases (CVDs): Fact sheet. https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases

World Health Organization. (2021b). Ethics and governance of artificial intelligence for health. https://iris.who.int/bitstream/handle/10665/341996/9789240029200-eng.pdf

Wynants, L., Van Calster, B., Collins, G. S., & Riley, R. D. (2020). Prediction models for diagnosis and prognosis of COVID-19 infection: Systematic review and critical appraisal. BMJ, 369, Article m1328. https://doi.org/10.1136/bmj.m1328 DOI: https://doi.org/10.1136/bmj.m1328

Yu, M., & et al. (2022). Reinforcement learning for dynamic treatment regimes in cardiovascular care. Frontiers in Cardiovascular Medicine, 9, Article 1012456. https://doi.org/10.3389/fcvm.2022.1012456

Zhang, Y., Chen, G., Xu, Z., & et al. (2024). FedCVD: A federated learning benchmark for cardiovascular disease detection. arXiv. https://doi.org/10.48550/arXiv.2411.07050

Downloads

Published

2025-10-03

Issue

Section

Articles

How to Cite

RIBEIRO, Helio de Araujo; MENEGÍDIO, Fabiano Bezerra; DA SILVA, Robson Rodrigues. MACHINE LEARNING IN CORONARY ARTERY DISEASE DETECTION: A TECHNICAL-SCIENTIFIC REVIEW. ARACÊ , [S. l.], v. 7, n. 10, p. e8638 , 2025. DOI: 10.56238/arev7n10-039. Disponível em: https://periodicos.newsciencepubl.com/arace/article/view/8638. Acesso em: 9 feb. 2026.