AVALIAÇÃO DO ÍNDICE DE OSTEONECROSE DA CABEÇA FEMORAL APÓS FIXAÇÃO DE FRATURA DO COLO DO FÊMUR COM MAIS DE 48 HORAS DE EVOLUÇÃO: UMA REVISÃO SISTEMÁTICA
DOI:
https://doi.org/10.56238/arev7n9-315Palavras-chave:
Fratura do Colo Femoral, Osteonecrose da Cabeça Femoral, Cirurgia Tardia, Complicações Ortopédicas, Terapias RegenerativasResumo
A fratura do colo femoral representa uma urgência ortopédica frequente, especialmente em idosos, estando associada a elevadas taxas de morbimortalidade. Quando o tratamento cirúrgico é adiado por mais de 48 horas após o trauma, observa-se um aumento significativo da incidência de complicações, com destaque para a osteonecrose da cabeça femoral. Este estudo tem como objetivo analisar, por meio de uma revisão sistemática da literatura, a frequência e os fatores associados ao desenvolvimento de osteonecrose em pacientes submetidos à fixação da fratura do colo femoral após esse intervalo crítico. Foram selecionados oito estudos que atenderam aos critérios de inclusão, envolvendo 835 pacientes no total. As taxas de osteonecrose variaram de 18,6% a 30%, sendo mais elevadas nos casos com maior tempo de atraso cirúrgico e ausência de terapias complementares. Constatou-se que o tempo entre o trauma e a cirurgia é um fator determinante para o desfecho clínico, reforçando a importância da intervenção precoce. Adicionalmente, o uso de terapias regenerativas demonstrou potencial para reduzir o risco de necrose, mesmo em contextos de cirurgia tardia. Esses achados evidenciam a necessidade de protocolos clínicos que priorizem o tratamento oportuno e considerem abordagens biotecnológicas adjuvantes.
Downloads
Referências
Aimaiti, A. et al. (2011). Therapeutic effect of osteogenically induced adipose derived stem cells on vascular deprivation-induced osteonecrosis of the femoral head in rabbits. Chinese Journal of Traumatology, 14, 215–220.
Andriolo, L. et al. (2018). Regenerative therapies increase survivorship of avascular necrosis of the femoral head: a systematic review and meta-analysis. International Orthopaedics, 42, 1689–1704. DOI: https://doi.org/10.1007/s00264-018-3787-0
Ansari, S. et al. (2022). Prediction of collapse in femoral head osteonecrosis: role of volumetric assessment. Hip International, 32(5), 596–603. DOI: https://doi.org/10.1177/1120700020978587
Bai, Y. et al. (2013). BMP-2, VEGF and bFGF synergistically promote the osteogenic differentiation of rat bone marrow-derived mesenchymal stem cells. Biotechnology Letters, 35, 301–308. DOI: https://doi.org/10.1007/s10529-012-1084-3
Bozic, K. J. et al. (2014). The epidemiology of revision total hip arthroplasty in the United States. Journal of Bone and Joint Surgery, 96(1), 1–7.
Campbell, R. B. et al. (2013). Timing of surgery for hip fractures: a systematic review. Canadian Journal of Surgery, 56(2), 82–90.
Casaletto, J. A. et al. (2009). The height-to-width index for assessment of femoral head deformity following osteonecrosis. Journal of Bone and Joint Surgery American, 91(12), 2915–2921. DOI: https://doi.org/10.2106/JBJS.H.00954
Chang, C. et al. (2020). The pathogenesis, diagnosis and clinical manifestations of steroid-induced osteonecrosis. Journal of Autoimmunity, 110, 102460. DOI: https://doi.org/10.1016/j.jaut.2020.102460
Del Pozo, J. L., & Patel, R. (2009). Infection associated with prosthetic joints. New England Journal of Medicine, 361, 787–794. DOI: https://doi.org/10.1056/NEJMcp0905029
Feng, Y. et al. (2010). Decreased number and function of circulating endothelial progenitor cells in patients with avascular necrosis. Bone, 46, 32–40. DOI: https://doi.org/10.1016/j.bone.2009.09.001
Gardeniers, J. W. M. (1998). Treatment of osteonecrosis by joint replacement. Hip International, 8, 159–166. DOI: https://doi.org/10.1177/112070009800800306
Han, N. et al. (2016). P-glycoprotein overexpression in bone marrow stromal cells decreases the risk of steroid-induced osteonecrosis. Journal of Cellular and Molecular Medicine, 20, 2173–2182. DOI: https://doi.org/10.1111/jcmm.12917
Hartley, W. T. et al. (2000). Osteonecrosis of the femoral head treated with cementless total hip arthroplasty. Journal of Bone and Joint Surgery American, 82, 1408–1413. DOI: https://doi.org/10.2106/00004623-200010000-00006
Haumer, A. et al. (2018). Delivery of cellular factors to regulate bone healing. Advanced Drug Delivery Reviews, 129, 285–294. DOI: https://doi.org/10.1016/j.addr.2018.01.010
Hernigou, P., & Beaujean, F. (2002). Treatment of osteonecrosis with autologous bone marrow grafting. Clinical Orthopaedics and Related Research, 405, 14–23. DOI: https://doi.org/10.1097/00003086-200212000-00003
Houdek, M. T. et al. (2016). Decreased osteogenic activity of mesenchymal stem cells in corticosteroid-induced osteonecrosis. Journal of Arthroplasty, 31, 893–898. DOI: https://doi.org/10.1016/j.arth.2015.08.017
Jansen, J. et al. (2005). Transplantation of hematopoietic stem cells from peripheral blood. Journal of Cellular and Molecular Medicine, 9, 37–50. DOI: https://doi.org/10.1111/j.1582-4934.2005.tb00335.x
Kamiya, N. et al. (2015). Development of a mouse model of ischemic osteonecrosis. Clinical Orthopaedics and Related Research, 473, 1486–1498. DOI: https://doi.org/10.1007/s11999-015-4172-6
Kim, H. K. et al. (2014). Pathogenesis and natural history of osteonecrosis. Orthopedic Clinics of North America, 45(2), 85–91.
Kuang, M. J. et al. (2019). Exosomes from Wharton’s jelly reduce osteocyte apoptosis in glucocorticoid-induced osteonecrosis via miR-21/PTEN/AKT. International Journal of Biological Sciences, 15, 1861–1871. DOI: https://doi.org/10.7150/ijbs.32262
Lazarides, A. L. et al. (2020). Impact of surgical delay on outcomes in hip fracture: systematic review. Journal of the American Academy of Orthopaedic Surgeons, 28(7), 304–315.
Lee, H. S. et al. (2003). Multipotential mesenchymal stem cells from femoral bone marrow near the site of osteonecrosis. Stem Cell, 21, 190–199. DOI: https://doi.org/10.1634/stemcells.21-2-190
Li, C. et al. (2016). Paracrine effect of inflammatory cytokine-activated BMSCs on osteoblast function. Journal of Bioscience and Bioengineering, 121, 213–219. DOI: https://doi.org/10.1016/j.jbiosc.2015.05.017
Li, Z. H. et al. (2020). MiR-291a-3p regulates BMSCs differentiation via DKK1. Kaohsiung Journal of Medical Sciences, 36, 35–42. DOI: https://doi.org/10.1002/kjm2.12134
Lie, A. K., & To, L. B. (1997). Peripheral blood stem cells: transplantation and beyond. Oncology, 2, 40–49. DOI: https://doi.org/10.1634/theoncologist.2-1-40
Mont, M. A., & Hungerford, D. S. (1995). Non-traumatic avascular necrosis of the femoral head. Journal of Bone and Joint Surgery American, 77, 459–474. DOI: https://doi.org/10.2106/00004623-199503000-00018
Moya-Angeler, J. et al. (2015). Current concepts on osteonecrosis of the femoral head. World Journal of Orthopaedics, 6, 590–601. DOI: https://doi.org/10.5312/wjo.v6.i8.590
Oedayrajsingh-Varma, M. J. et al. (2006). Mesenchymal stem cell yield affected by harvesting procedure. Cytotherapy, 8, 166–177. DOI: https://doi.org/10.1080/14653240600621125
Pak, J. (2012). Adipose-derived stem cells induce persistent bone-like tissue in osteonecrotic femoral heads. Pain Physician, 15, 75–85. DOI: https://doi.org/10.36076/ppj.2012/15/75
Radl, R. et al. (2005). Failure rate and stem migration in uncemented THA. Acta Orthopaedica, 76, 49–55. DOI: https://doi.org/10.1080/00016470510030319
Rastogi, S. et al. (2013). Autologous MSCs in management of osteonecrosis of femur. Musculoskeletal Surgery, 97, 223–228. DOI: https://doi.org/10.1007/s12306-013-0273-0
Ravi, B. et al. (2018). Overlapping surgery and increased complications in hip surgery. JAMA Internal Medicine, 178, 75–83. DOI: https://doi.org/10.1001/jamainternmed.2017.6835
Sculco, P. K. et al. (2017). Surgical timing and outcomes after femoral neck fracture. Clinical Orthopaedics and Related Research, 475(4), 1201–1210.
Smith, A. J. et al. (2012). Failure rates of metal-on-metal hip resurfacings. The Lancet, 380, 1759–1766. DOI: https://doi.org/10.1016/S0140-6736(12)60989-1
Song, H. J. et al. (2010). Peripheral blood stem cell transplantation for ischemic necrosis. Transplantation Proceedings, 42, 1862–1864. DOI: https://doi.org/10.1016/j.transproceed.2010.02.077
To, L. B. et al. (1997). The biology and clinical uses of blood stem cells. Blood, 89, 2233–2258. DOI: https://doi.org/10.1182/blood.V89.7.2233
Trikha, V. et al. (2018). Current evidence and future directions in management of AVN. Journal of Clinical Orthopaedics and Trauma, 9(3), 363–371.
Wang, A. et al. (2018). Pathogenesis of steroid-induced osteonecrosis. Gene, 671, 103–109. DOI: https://doi.org/10.1016/j.gene.2018.05.091
Wang, H. J. et al. (2017). VEGF165-modified ADSCs repair bone defect in diabetic rats. Zhong Guo Gu Shang, 30, 545–551.
Wyles, C. C. et al. (2015). Adipose-derived MSCs for osteonecrosis regeneration. Clinical Orthopaedics and Related Research, 473, 3080–3090. DOI: https://doi.org/10.1007/s11999-015-4385-8
Xu, Y. et al. (2020). Stem cell therapy for osteonecrosis: opportunities and challenges. Regenerative Therapy, 15, 295–304. DOI: https://doi.org/10.1016/j.reth.2020.11.003
Ying, J. et al. (2019). PBSC therapy does not improve outcomes in femoral head necrosis. Journal of Orthopaedic Research, 14, 1–8.
Zalavras, C. G. et al. (2014). Hip fracture management and surgical timing. Injury, 45(2), 112–117.
Zhu, H. et al. (2010). Isolation of MSCs from mouse compact bone. Nature Protocols, 5, 550–560. DOI: https://doi.org/10.1038/nprot.2009.238