EVALUACIÓN DEL ÍNDICE DE OSTEONECROSIS DE LA CABEZA FEMORAL TRAS LA FIJACIÓN DE UNA FRACTURA DE CUELLO DE FÉMUR CON MÁS DE 48 HORAS DE EVOLUCIÓN: UNA REVISIÓN SISTEMÁTICA
DOI:
https://doi.org/10.56238/arev7n9-315Palabras clave:
Fractura de Cuello Femoral, Osteonecrosis de Cabeza Femoral, Cirugía Diferida, Complicaciones Ortopédicas, Terapias RegenerativasResumen
Las fracturas de cuello femoral representan una urgencia ortopédica frecuente, especialmente en ancianos, y se asocian a altas tasas de morbilidad y mortalidad. Cuando el tratamiento quirúrgico se retrasa más de 48 horas tras el traumatismo, se observa un aumento significativo en la incidencia de complicaciones, en particular la osteonecrosis de la cabeza femoral. Este estudio busca analizar, mediante una revisión sistemática de la literatura, la frecuencia y los factores asociados al desarrollo de osteonecrosis en pacientes sometidos a fijación de fracturas de cuello femoral tras este intervalo crítico. Se seleccionaron ocho estudios que cumplieron los criterios de inclusión, con un total de 835 pacientes. Las tasas de osteonecrosis oscilaron entre el 18,6% y el 30%, siendo mayores en los casos con retrasos quirúrgicos más prolongados y falta de terapias complementarias. Se observó que el tiempo transcurrido entre el traumatismo y la cirugía es un factor determinante en el resultado clínico, lo que refuerza la importancia de la intervención temprana. Además, el uso de terapias regenerativas ha demostrado potencial para reducir el riesgo de necrosis, incluso en el contexto de una cirugía tardía. Estos hallazgos resaltan la necesidad de protocolos clínicos que prioricen el tratamiento oportuno y consideren enfoques biotecnológicos adyuvantes.
Descargas
Referencias
Aimaiti, A. et al. (2011). Therapeutic effect of osteogenically induced adipose derived stem cells on vascular deprivation-induced osteonecrosis of the femoral head in rabbits. Chinese Journal of Traumatology, 14, 215–220.
Andriolo, L. et al. (2018). Regenerative therapies increase survivorship of avascular necrosis of the femoral head: a systematic review and meta-analysis. International Orthopaedics, 42, 1689–1704.
Ansari, S. et al. (2022). Prediction of collapse in femoral head osteonecrosis: role of volumetric assessment. Hip International, 32(5), 596–603.
Bai, Y. et al. (2013). BMP-2, VEGF and bFGF synergistically promote the osteogenic differentiation of rat bone marrow-derived mesenchymal stem cells. Biotechnology Letters, 35, 301–308.
Bozic, K. J. et al. (2014). The epidemiology of revision total hip arthroplasty in the United States. Journal of Bone and Joint Surgery, 96(1), 1–7.
Campbell, R. B. et al. (2013). Timing of surgery for hip fractures: a systematic review. Canadian Journal of Surgery, 56(2), 82–90.
Casaletto, J. A. et al. (2009). The height-to-width index for assessment of femoral head deformity following osteonecrosis. Journal of Bone and Joint Surgery American, 91(12), 2915–2921.
Chang, C. et al. (2020). The pathogenesis, diagnosis and clinical manifestations of steroid-induced osteonecrosis. Journal of Autoimmunity, 110, 102460.
Del Pozo, J. L., & Patel, R. (2009). Infection associated with prosthetic joints. New England Journal of Medicine, 361, 787–794.
Feng, Y. et al. (2010). Decreased number and function of circulating endothelial progenitor cells in patients with avascular necrosis. Bone, 46, 32–40.
Gardeniers, J. W. M. (1998). Treatment of osteonecrosis by joint replacement. Hip International, 8, 159–166.
Han, N. et al. (2016). P-glycoprotein overexpression in bone marrow stromal cells decreases the risk of steroid-induced osteonecrosis. Journal of Cellular and Molecular Medicine, 20, 2173–2182.
Hartley, W. T. et al. (2000). Osteonecrosis of the femoral head treated with cementless total hip arthroplasty. Journal of Bone and Joint Surgery American, 82, 1408–1413.
Haumer, A. et al. (2018). Delivery of cellular factors to regulate bone healing. Advanced Drug Delivery Reviews, 129, 285–294.
Hernigou, P., & Beaujean, F. (2002). Treatment of osteonecrosis with autologous bone marrow grafting. Clinical Orthopaedics and Related Research, 405, 14–23.
Houdek, M. T. et al. (2016). Decreased osteogenic activity of mesenchymal stem cells in corticosteroid-induced osteonecrosis. Journal of Arthroplasty, 31, 893–898.
Jansen, J. et al. (2005). Transplantation of hematopoietic stem cells from peripheral blood. Journal of Cellular and Molecular Medicine, 9, 37–50.
Kamiya, N. et al. (2015). Development of a mouse model of ischemic osteonecrosis. Clinical Orthopaedics and Related Research, 473, 1486–1498.
Kim, H. K. et al. (2014). Pathogenesis and natural history of osteonecrosis. Orthopedic Clinics of North America, 45(2), 85–91.
Kuang, M. J. et al. (2019). Exosomes from Wharton’s jelly reduce osteocyte apoptosis in glucocorticoid-induced osteonecrosis via miR-21/PTEN/AKT. International Journal of Biological Sciences, 15, 1861–1871.
Lazarides, A. L. et al. (2020). Impact of surgical delay on outcomes in hip fracture: systematic review. Journal of the American Academy of Orthopaedic Surgeons, 28(7), 304–315.
Lee, H. S. et al. (2003). Multipotential mesenchymal stem cells from femoral bone marrow near the site of osteonecrosis. Stem Cell, 21, 190–199.
Li, C. et al. (2016). Paracrine effect of inflammatory cytokine-activated BMSCs on osteoblast function. Journal of Bioscience and Bioengineering, 121, 213–219.
Li, Z. H. et al. (2020). MiR-291a-3p regulates BMSCs differentiation via DKK1. Kaohsiung Journal of Medical Sciences, 36, 35–42.
Lie, A. K., & To, L. B. (1997). Peripheral blood stem cells: transplantation and beyond. Oncology, 2, 40–49.
Mont, M. A., & Hungerford, D. S. (1995). Non-traumatic avascular necrosis of the femoral head. Journal of Bone and Joint Surgery American, 77, 459–474.
Moya-Angeler, J. et al. (2015). Current concepts on osteonecrosis of the femoral head. World Journal of Orthopaedics, 6, 590–601.
Oedayrajsingh-Varma, M. J. et al. (2006). Mesenchymal stem cell yield affected by harvesting procedure. Cytotherapy, 8, 166–177.
Pak, J. (2012). Adipose-derived stem cells induce persistent bone-like tissue in osteonecrotic femoral heads. Pain Physician, 15, 75–85.
Radl, R. et al. (2005). Failure rate and stem migration in uncemented THA. Acta Orthopaedica, 76, 49–55.
Rastogi, S. et al. (2013). Autologous MSCs in management of osteonecrosis of femur. Musculoskeletal Surgery, 97, 223–228.
Ravi, B. et al. (2018). Overlapping surgery and increased complications in hip surgery. JAMA Internal Medicine, 178, 75–83.
Sculco, P. K. et al. (2017). Surgical timing and outcomes after femoral neck fracture. Clinical Orthopaedics and Related Research, 475(4), 1201–1210.
Smith, A. J. et al. (2012). Failure rates of metal-on-metal hip resurfacings. The Lancet, 380, 1759–1766.
Song, H. J. et al. (2010). Peripheral blood stem cell transplantation for ischemic necrosis. Transplantation Proceedings, 42, 1862–1864.
To, L. B. et al. (1997). The biology and clinical uses of blood stem cells. Blood, 89, 2233–2258.
Trikha, V. et al. (2018). Current evidence and future directions in management of AVN. Journal of Clinical Orthopaedics and Trauma, 9(3), 363–371.
Wang, A. et al. (2018). Pathogenesis of steroid-induced osteonecrosis. Gene, 671, 103–109.
Wang, H. J. et al. (2017). VEGF165-modified ADSCs repair bone defect in diabetic rats. Zhong Guo Gu Shang, 30, 545–551.
Wyles, C. C. et al. (2015). Adipose-derived MSCs for osteonecrosis regeneration. Clinical Orthopaedics and Related Research, 473, 3080–3090.
Xu, Y. et al. (2020). Stem cell therapy for osteonecrosis: opportunities and challenges. Regenerative Therapy, 15, 295–304.
Ying, J. et al. (2019). PBSC therapy does not improve outcomes in femoral head necrosis. Journal of Orthopaedic Research, 14, 1–8.
Zalavras, C. G. et al. (2014). Hip fracture management and surgical timing. Injury, 45(2), 112–117.
Zhu, H. et al. (2010). Isolation of MSCs from mouse compact bone. Nature Protocols, 5, 550–560.
