SCIENTIFIC EVIDENCE FOR CARIOUS TISSUE REMOVAL USING SOLID-STATE LASERS: A SCOPING REVIEW

Authors

  • Sabrina Fernandes Martins Author
  • Flávia Beatriz Gomes Côrrea Author
  • Luiz Eduardo de Almeida Author
  • Valéria de Oliveira Author
  • Michelle Inês e Silva Author
  • Milene de Oliveira Author
  • Werônica Jaernevay Silveira Mitterhofer Author

DOI:

https://doi.org/10.56238/arev7n11-342

Keywords:

Solid-State Lasers, Dental Cavity Preparation, Dental Caries

Abstract

Objective: To map the scientific evidence available on the use of high-power lasers, particularly solid-state lasers, for the removal of carious tissue in permanent teeth. Methodology: This scoping review followed the methodological guidance of the Joanna Briggs Institute (JBI) and the PRISMA-ScR reporting standards. Searches were conducted in the PubMed (MEDLINE) and Virtual Health Library (BVS/BIREME) databases with no date restrictions. Eligible studies included those published in indexed scientific journals addressing the use of high-power or solid-state lasers for the removal of carious tissue in permanent human teeth. Duplicate records, non-indexed publications, non-scientific materials, academic theses, and studies involving primary teeth were excluded. Study selection and data extraction were performed independently by two reviewers, with disagreements resolved by a third reviewer. Results: A total of 1,816 studies were screened, of which 43 met the eligibility criteria. The publication period of the included studies ranged from 1995 to 2024, with a predominance of English-language articles and laboratory-based designs. Er:YAG and Er,Cr:YSGG lasers were the most extensively investigated, demonstrating effectiveness in selectively removing carious dentin while preserving sound tissue and producing smear-free, micro-retentive surfaces. Several studies also reported significant reductions in cariogenic microorganisms and high patient acceptance, including reduced discomfort and decreased need for local anesthesia. However, laser-based procedures generally required longer clinical time compared with rotary instrumentation, and their performance depended heavily on the operational parameters employed. The findings indicate that solid-state lasers constitute a minimally invasive and biologically safe alternative, particularly for incipient lesions and pediatric patients. Nevertheless, limitations such as longer clinical time, high equipment costs, and the predominance of laboratory research limit their widespread implementation in routine dental practice. Conclusion: Overall, Er:YAG and Er,Cr:YSGG lasers demonstrate relevant clinical potential, supported by consistent evidence of effectiveness and patient comfort, although additional well-designed clinical trials are required to strengthen their applicability in contemporary restorative dentistry.

Downloads

Download data is not yet available.

References

1.Hamidi MM, Ercan E, Dülgergil ÇT, Çolak H. Evaluation of the clinical success of class I cavities prepared by an Er:YAG laser: 5-year follow-up study. Lasers Med Sci.; 30(7): 1895-901, 2015. doi: 10.1007/s10103-015-1751-4.

2. Valério RA, Galo R, Galafassi D, Corona SAM, Borsatto MC. Four-year clinical prospective follow-up of resin composite restoration after selective caries removal using Er:YAG laser. Clin Oral Investig.; 24(7):2271-2283, 2020. doi: 10.1007/s00784-019-03082-w.

3. Baraba A, Kqiku L, Gabrić D, Verzak Ž, Hanscho K, Miletić I. Efficacy of removal of cariogenic bacteria and carious dentin by ablation using different modes of Er:YAG lasers. Braz J Med Biol Res.; 51(3): e6872, 2018. doi: 10.1590/1414-431X20176872.

4. Cardoso M, Coelho A, Lima R, Amaro I, Paula A, Marto CM, Sousa J, Spagnuolo G, Ferreira MM, Carrilho E. Efficacy and patient’s acceptance of alternative methods for caries removal – a systematic review. J Clin Med.; 9(11): 3407, 2020. doi: 10.3390/jcm9113407.

5. Sharma N, Sisodia S, Jain A, Bhargava T, Kumar P, Rana KS. Evaluation of the efficacy of recent caries removal techniques: an in vitro study. Cureus; 15(1): e34432, 2023. doi: 10.7759/cureus.34432.

6. Kini A, Kothari P, Sujith R, Shetty N, Varughese BK, Kasargod SC. Comparative evaluation of clinical and microbiological assessment of caries excavation using conventional, smart bur, chemomechanical method and ErCr:YSGG laser. J Pharm Bioallied Sci.; 16(Suppl 3): S2830-S2832, 2024. doi: 10.4103/jpbs.jpbs_315_24.

7. Sarmadi R, Andersson EV, Lingström P, Gabre P. A randomized controlled trial comparing Er:YAG laser and rotary bur in the excavation of caries – patients’ experiences and the quality of composite restoration. Dente aberto J.; 12:443-454, 2018. doi: 10.2174/1874210601812010443.

8. Valenti C, Pagano S, Bozza S, Ciurnella E, Lomurno G, Capobianco B, Coniglio M, Cianetti S, Marinucci L. Use of the Er:YAG laser in conservative dentistry: evaluation of the microbial population in carious lesions. Materials (Basel); 14(9): 2387, 2021. doi: 10.3390/ma14092387.

9. Peters MDJ, Godfrey C, McInerney P, Munn Z, Tricco AC, Khalil, H. Scoping Reviews (2020). Aromataris E, Lockwood C, Porritt K, Pilla B, Jordan Z, editors. JBI Manual for Evidence Synthesis. JBI; 2024. Disponível em: https://synthesismanual.jbi.global. https://doi.org/10.46658/JBIMES-24-09

10. Tricco AC, Lillie E, Zarin W, O'Brien KK, Colquhoun H, Levac D, et al. PRISMA Extension for Scoping Reviews (PRISMAScR): Checklist and Explanation. Ann Intern Med.; 169:467-473, 2018. doi: 10.7326/M18-0850.

11. Martins SF, Côrrea FBG, Almeida LE, Mitterhofer, WJS. Evidências científicas sobre a remoção de tecido cariado com utilização de lasers de estado sólido: protocolo de uma revisão de escopo. OSF, 2025, September 25. doi: 10.17605/OSF.IO/W9P5R.

12. Almeida LE, Oliveira JM, Oliveira V, Mialhe FL. Scientific Production in Dentistry for the LGBTQIA+ Population: A Scoping Review. Pesqui Bras Odontopediatria Clín Integr.; 24: e230240, 2024. doi: 10.1590/pboci.2024.088.

13. Almeida LE, Oliveira JM, Oliveira V, Mialhe FL. Scientific production on LGBTQIA+ health: a critical analysis of the literature. Saúde Soc.; 31(4): e210836en, 2022. doi: 10.1590/S0104 12902022210836en.

14. Ouzzani M, Hammady H, Fedorowicz Z, Elmagarmid A. Rayyan - a web and mobile app for systematic reviews. Systematic Reviews.; 5(-): e210, 2015. doi: 10.1186/s13643-016-0384-4m.

15. Niemz MH. Cavity preparation with the Nd:YLF picosecond laser. Journal of Dental Research; 1995. doi: 10.1177/00220345950740050801

16. Keller U, Hibst R. Effects of Er:YAG laser in caries treatment: a clinical pilot study. Lasers in Surgery and Medicine, 1997. doi: 10.1002/(sici)1096-9101(1997)20:1<32::aid-lsm5>3.0.co;2-#.

17. Aoki A, Ishikawa I, Yamada T, Otsuki M, Watanabe H, Tagami J, Ando Y, Yamamoto H. Comparison between Er:YAG laser and conventional technique for root caries treatment in vitro. Journal of Dental Research, EUA, 1998. doi: 10.1177/00220345980770060501.]

18. Keller U, Hibst R, Geurtsen W, Schilke R, Heidemann D, Klaiber B, Raab WH. Erbium:YAG laser application in caries therapy: evaluation of patient perception and acceptance. Journal of Dentistry, 1998. doi: 10.1016/s0300-5712(97)00036-5

19. Armengol V, Jean A, Rohanizadeh R, Hamel H. Scanning electron microscopic analysis of diseased and healthy dental hard tissues after Er:YAG laser irradiation: in vitro study. Journal of Endodontics, 1999. doi: 10.1016/S0099-2399(99)80376-8

20. Evans DJP, Matthews S, Pitts NB, Longbottom C, Nugent ZJ. A clinical evaluation of an Erbium:YAG laser for dental cavity preparation. British Dental Journal, 2000. doi: 10.1038/sj.bdj.480057

21. Yamada Y, Hossain M, Nakamura Y, Suzuki N, Matsumoto K. Comparison between the removal effect of mechanical, Nd:YAG, and Er:YAG laser systems in carious dentin. Journal of Clinical Laser Medicine and Surgery, 2001. doi: 10.1089/10445470152611964

22. Reich E. Lasers in de tandheelkunde. 4. Verwijdering van carieus weefsel met lasers [Lasers in dentistry 4. Removal of carious tissue using lasers]. Ned Tijdschr Tandheelkd. 2002 Jul;109(7):246-9. Dutch. PMID: 12148247.

23. Harris DM, White JM, Goodis H, Arcoria CJ, Simon J, Carpenter WM, Fried D, Burkart J, Yessik M, Myers TD. Selective ablation of surface enamel caries with a pulsed Nd:YAG dental laser. Lasers in Surgery and Medicine, EUA, 2002. doi: 10.1002/lsm.10052

24.Nemes J, Csillag M, Fazekas A. Fejlódés a fogorvosi preparációs technikában (irodalmi áttekintés) [Advancements in dental preparation technique (literature review)]. Fogorv Sz. 2002 Jun;95(3):99-104. Hungarian. PMID: 12141194.

25. Shigetani Y, Okamoto A, Abu-Bakr N, Iwaku M. A study of cavity preparation by Er:YAG laser--observation of hard tooth structures by laser scanning microscope and examination of the time necessary to remove caries. Dent Mater J. 2002 Mar;21(1):20-31. PMID: 12046519.

26. Matsumoto K, Hossain M, Hossain MMI, Kawano H, Kimura Y. Clinical assessment of Er,Cr:YSGG laser application for cavity preparation. Journal of Clinical Laser Medicine and Surgery, 2002. doi: 10.1089/104454702753474968

27. Kinoshita JI, Kimura Y, Matsumoto K. Comparative study of carious dentin removal by Er,Cr:YSGG laser and Carisolv. Journal of Clinical Laser Medicine and Surgery, 2003. doi: 10.1089/104454703322564532

28. Bispo LB, Mondelli J. Uma alternativa para o alta-rotação: Er:YAG laser. Revista Brasileira de Odontologia (Impresso), 2004.

29. Kubo CH, Oyafuso DK, Valera MC, Araújo MAM. Estudo comparativo do grau de permanência de cárie residual após preparos com brocas, ultra-som e laser Er:YAG: avaliação em luz polarizada. JBD – Revista Íbero-Americana de Odontologia Estética & Dentística Operatória, 2005.

30. Jepsen S, Açil Y, Peschel T, Kargas K, Eberhard J. Biochemical and morphological analysis of dentin following selective caries removal with a fluorescence-controlled Er:YAG laser. Lasers in Surgery and Medicine, 2008. doi: 10.1002/lsm.20631.

31. Dommisch H, Peus K, Kneist S, Krause F, Braun A, Hedderich J, Jepsen S, Eberhard J. Fluorescence-controlled Er:YAG laser for caries removal in permanent teeth: a randomized clinical trial. European Journal of Oral Sciences, 2008. doi: 10.1111/j.1600-0722.2008.00521.x.

32. Tsanova ST, Tomov GT. Morphological changes in hard dental tissues prepared by Er:YAG laser (LiteTouch, Syneron), Carisolv and rotary instruments: a scanning electron microscopy evaluation. Folia Medica, 2010. doi: 10.2478/v10153-010-0006-1

33. Yazici AR, Baseren M, Gorucu J. Clinical comparison of bur- and laser-prepared minimally invasive occlusal resin composite restorations: two-year follow-up. Operative Dentistry, EUA, 2010. doi: 10.2341/09-339-C.

34. Jacobsen T, Norlund A, Englund GS, Tranæus S. Application of laser technology for removal of caries: a systematic review of controlled clinical trials. Acta Odontologica Scandinavica, 2011. doi: 10.3109/00016357.2010.536901

35. Neves AA, Coutinho E, De Munck J, Van Meerbeek B. Caries-removal effectiveness and minimal-invasiveness potential of caries-excavation techniques: a micro-CT investigation. Journal of Dentistry , 2011. doi: 10.1016/j.jdent.2010.11.006

36. Baraba A, Perhavec T, Chieffi N, Ferrari M, Anic I, Miletic I. Ablative potential of four different pulses of Er:YAG lasers and low-speed handpiece. Photomedicine and Laser Surgery, 2012. doi: 10.1089/pho.2011.3190.

37. Schwass DR, Leichter JW, Purton DG, Swain MV. Evaluating the efficiency of caries removal using an Er:YAG laser driven by fluorescence feedback control. Archives of Oral Biology, 2013. doi: 10.1016/j.archoralbio.2012.09.017.

38. Geraldo-Martins V, Thome T, Mayer M, Marques M. The use of bur and laser for root caries treatment: a comparative study. Operative Dentistry, 2013. doi: 10.2341/11-345-L.

39. Sarmadi R, Hedman E, Gabre P. Laser in caries treatment: patients’ experiences and opinions. International Journal of Dental Hygiene, 2014. doi: 10.1111/idh.12027.

40. Engelbach C, Dehn C, Bourauel C, Meister J, Frentzen M. Ablation of carious dental tissue using an ultrashort pulsed laser (USPL) system. Lasers in Medical Science, 2015. doi: 10.1007/s10103-014-1594-4

41. Tom H, Chan KH, Saltiel D, Fried D. Selective removal of demineralized enamel using a CO₂ laser coupled with near-IR reflectance imaging. Proceedings of SPIE, 2015. doi: 10.1117/12.2083647.

42. Chan KH, Tom H, Darling CL, Fried D, Chung LC. Serial removal of caries lesions from tooth occlusal surfaces using near-IR image-guided IR laser ablation. Proceedings of SPIE, 2015. doi: 10.1117/12.2083651.

43. Chung LC, Tom H, Chan KH, Simon JC, Fried D, Darling CL. Image-guided removal of occlusal caries lesions with a λ=9.3-µm CO₂ laser using near-IR transillumination. Proceedings of SPIE, 2015. doi: 10.1117/12.2083652.

44. Medioni E, Rocca JP, Fornaini C, Merigo E. Histological evaluation of three techniques for caries removal. Journal of Oral Science, 2016. doi: 10.2334/josnusd.16-0225.

45. Chan KH, Fried D. Selective laser ablation of carious lesions using simultaneous scanned near-IR diode and CO₂ lasers. Proceedings of SPIE, 2017. doi: 10.1117/12.2256696.

46. Jew J, Chan KH, Darling CL, Fried D. Selective removal of natural caries lesions from dentin and tooth occlusal surfaces using a diode-pumped Er:YAG laser. Proceedings of SPIE, 2017. doi: 10.1117/12.2256728

47. Fried WA, Chan KH, Darling CL, Fried D. Use of a DPSS Er:YAG laser for the selective removal of composite from tooth surfaces. Biomedical Optics Express; 2018. doi: 10.1364/BOE.9.005026.

48. Chan KH, Fried D. Selective ablation of dental caries using coaxial CO₂ (9.3-μm) and near-IR (1880-nm) lasers. Lasers in Surgery and Medicine; 2019. doi: 10.1002/lsm.23002.

49. Vaddamanu SK, Vyas R, Kavita K, Sushma R, Aboobacker AS, Dixit A, Kumar A. In vitro Evaluation of Laser vs. Handpiece for Tooth Preparation. J Pharm Bioallied Sci. 2022. doi: 10.4103/jpbs.jpbs_95_22.

Published

2025-11-26

Issue

Section

Articles

How to Cite

MARTINS, Sabrina Fernandes; CÔRREA, Flávia Beatriz Gomes; DE ALMEIDA, Luiz Eduardo; DE OLIVEIRA, Valéria; E SILVA, Michelle Inês; DE OLIVEIRA, Milene; MITTERHOFER, Werônica Jaernevay Silveira. SCIENTIFIC EVIDENCE FOR CARIOUS TISSUE REMOVAL USING SOLID-STATE LASERS: A SCOPING REVIEW. ARACÊ , [S. l.], v. 7, n. 11, p. e10429, 2025. DOI: 10.56238/arev7n11-342. Disponível em: https://periodicos.newsciencepubl.com/arace/article/view/10429. Acesso em: 5 dec. 2025.