DESEMPENHO COMPARATIVO DE DIFERENTES FLOCULANTES NA RECUPERAÇÃO DE BIOMASSA DE SCENEDESMUS OBLIQUUS COM QUANTIFICAÇÃO DE LIPÍDIOS
DOI:
https://doi.org/10.56238/levv16n53-138Palavras-chave:
Biomassa de Algas, Bioenergia, Floculante, LipídiosResumo
Avaliar a recuperação de biomassa algal em diferentes métodos de colheita da microalga Scenedesmus obliquus, utilizando agentes floculantes químicos e naturais. O experimento foi conduzido em triplicata, avaliando cinco agentes floculantes, sendo três químicos (hidróxido de sódio, cloreto férrico e sulfato férrico) e dois naturais (quitosana e Moringa oleifera). A eficiência de floculação, o rendimento de recuperação de biomassa e, posteriormente, o teor de lipídios (%) da biomassa recuperada foram analisados de forma integrada. Nos testes de eficiência de floculação com 24 horas de interação, todos os floculantes avaliados apresentaram eficiência acima de 90%, demonstrando a eficácia dos diferentes agentes. O rendimento de biomassa variou de 0,157 g/L a 0,245 g/L, com os maiores valores observados nos tratamentos com sais metálicos. Em relação ao teor de lipídios, os floculantes químicos apresentaram rendimentos de 5,0% a 6,0%, enquanto os floculantes naturais (Moringa oleifera e quitosana) proporcionaram níveis mais elevados, variando de 7,6% a 11%. Todos os agentes floculantes avaliados demonstraram alta eficiência na recuperação da biomassa algal, com taxas superiores a 90%, confirmando a eficácia tanto dos floculantes químicos quanto dos naturais. Dentre eles, o sulfato férrico se destacou por apresentar o maior rendimento de biomassa. Por outro lado, o maior teor de lipídios foi observado na biomassa recuperada por floculantes naturais como quitosana e M. oleifera, sugerindo que esses agentes naturais não apenas permitem uma recuperação eficiente, mas também preservam melhor os componentes bioativos.
Downloads
Referências
1. Lourenço, S. O. (2006). Cultivo de microalgas marinhas: Princípios e aplicações. Rima.
2. Goswami, R. K., Agrawal, K., & Verma, P. (2022). Microalgal-based remediation of wastewater: A step towards environment protection and management. Environmental Quality Management, 32(1). https://doi.org/10.1002/tqem.21850 DOI: https://doi.org/10.1002/tqem.21850
3. Hartulistiyoso, E., et al. (2024). Co-production of hydrochar and bioactive compounds from Ulva lactuca via a hydrothermal process. Carbon Resources Conversion, 7(1). https://doi.org/10.1016/j.crcon.2023.05.002 DOI: https://doi.org/10.1016/j.crcon.2023.05.002
4. Liu, Z., Hao, N., Hou, Y., Wang, Q., Liu, Q., Yan, S., Chen, F., & Zhao, L. (2023). Technologies for harvesting the microalgae for industrial applications: Current trends and perspectives. Bioresource Technology, 387, Article 129631. https://doi.org/10.1016/j.biortech.2023.129631 DOI: https://doi.org/10.1016/j.biortech.2023.129631
5. Silva, A. G. M., Freitas, D. M., Silva, K. E. S., Rêgo, Á. P., França, C. L., Vaz, E. C. R., Santos, E. P., & Vasconcelos, R. F. L. (2021). Efficiency of flocculating agents evaluating the flocculation time of the microalgae Chlorella vulgaris (Beyerinck) aiming at the production of biodiesel. Brazilian Applied Science Review, 5(2), 1198–1206. https://doi.org/10.34115/basrv5n2-043 DOI: https://doi.org/10.34115/basrv5n2-043
6. Uduman, N., Qi, Y., Danquah, M., & Hoadley, A. (2010). Marine microalgae flocculation and focused beam reflectance measurement. Chemical Engineering Journal, 935–940. https://doi.org/10.1016/j.cej.2010.06.046 DOI: https://doi.org/10.1016/j.cej.2010.06.046
7. Chen, C. Y., Yeh, K. L., Aisyah, R., Lee, D. J., & Chang, J. S. (2011). Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: A critical review. Bioresource Technology, 102(1), 71–81. https://doi.org/10.1016/j.biortech.2010.06.159 DOI: https://doi.org/10.1016/j.biortech.2010.06.159
8. Chen, L., Wang, C., Wang, W., & Wei, J. (2013). Optimal conditions of different flocculation methods for harvesting Scenedesmus sp. cultivated in an open-pond system. Bioresource Technology, 133, 9–15. https://doi.org/10.1016/j.biortech.2013.01.071 DOI: https://doi.org/10.1016/j.biortech.2013.01.071
9. Roselet, F. F. G. (2015). Flow of cultivation and flocculation of the marine microalgae Nannochloropsis oculata [Tese de doutorado, Universidade Federal do Rio Grande].
10. Marinho, Y. F., et al. (2022). A circular approach for the efficient recovery of astaxanthin from Haematococcus pluvialis biomass harvested by flocculation and water reusability. Science of the Total Environment, 841, Article 156795. https://doi.org/10.1016/j.scitotenv.2022.156795 DOI: https://doi.org/10.1016/j.scitotenv.2022.156795
11. Lu, Z., et al. (2020). Water reuse for sustainable microalgae cultivation: Current knowledge and future directions. Resources, Conservation and Recycling, 161, Article 104975. https://doi.org/10.1016/j.resconrec.2020.104975 DOI: https://doi.org/10.1016/j.resconrec.2020.104975
12. Guillard, R. R. L. (1975). Culture of phytoplankton for feeding marine invertebrates. In M. L. Smith & M. H. Chanley (Eds.), Culture of marine invertebrate animals (pp. 29–60). Plenum Press. https://doi.org/10.1007/978-1-4615-8714-9_3 DOI: https://doi.org/10.1007/978-1-4615-8714-9_3
13. Scherer, M. D., et al. (2018). Environmental evaluation of flocculation efficiency in the separation of the microalgal biomass of Scenedesmus sp. cultivated in full-scale photobioreactors. Journal of Environmental Science and Health, Part A, 53(10), 938–945. https://doi.org/10.1080/10934529.2018.1471093 DOI: https://doi.org/10.1080/10934529.2018.1470961
14. Hamid, S. H. A., et al. (2016). A study of coagulating protein of Moringa oleifera in microalgae bioflocculation. International Biodeterioration & Biodegradation, 113, 310–317. https://doi.org/10.1016/j.ibiod.2016.03.027 DOI: https://doi.org/10.1016/j.ibiod.2016.03.027
15. Elcik, H., et al. (2023). Microalgae biomass harvesting using chitosan flocculant: Optimization of operating parameters by response surface methodology. Separations, 10(9), Article 507. https://doi.org/10.3390/separations10090507 DOI: https://doi.org/10.3390/separations10090507
16. Dolganyuk, V., et al. (2020). Study of morphological features and determination of the fatty acid composition of the microalgae lipid complex. Biomolecules, 10(11), Article 1571. https://doi.org/10.3390/biom10111571 DOI: https://doi.org/10.3390/biom10111571
17. Chen, Z., et al. (2018). Determination of microalgal lipid content and fatty acid for biofuel production. BioMed Research International, 2018, Article 1503126. https://doi.org/10.1155/2018/1503126 DOI: https://doi.org/10.1155/2018/1503126
18. Lee, R. E. (2008). Phycology. Cambridge University Press. https://doi.org/10.1017/CBO9780511812897 DOI: https://doi.org/10.1017/CBO9780511812897
19. Dias, A., et al. (2021). Green coagulants recovering Scenedesmus obliquus: An optimization study. Chemosphere, 262, Article 127881. https://doi.org/10.1016/j.chemosphere.2020.127881 DOI: https://doi.org/10.1016/j.chemosphere.2020.127881
20. Selesu, N. F. H. (2015). Development of microalgae production process in industrial photobioreactor using biodigested swine effluent [Dissertação de mestrado, Curso de Ciência e Engenharia de Materiais, Universidade Federal do Paraná].
21. Jambo, S. A., et al. (2016). A review on third generation bioethanol feedstock. Renewable and Sustainable Energy Reviews, 65, 756–769. https://doi.org/10.1016/j.rser.2016.07.064 DOI: https://doi.org/10.1016/j.rser.2016.07.064
22. Lima, K., et al. (2024). Cultivation of microalgae Chlorella vulgaris, Monoraphidium sp. and Scenedesmus obliquus in wastewater from the household appliance industry for bioremediation and biofuel production. 3 Biotech, 14(12). https://doi.org/10.1007/s13205-024-04123-4 DOI: https://doi.org/10.1007/s13205-024-04142-z
23. Hesse, M. C. S., et al. (2017). Optimization of flocculation with tannin-based flocculant in the water reuse and lipidic production for the cultivation of Acutodesmus obliquus. Separation Science and Technology, 52(5), 936–942. https://doi.org/10.1080/01496395.2016.1269130 DOI: https://doi.org/10.1080/01496395.2016.1269130
24. Ruiz-Marín, A., et al. (2019). Harvesting Scenedesmus obliquus via flocculation of Moringa oleifera seed extract from urban wastewater: Proposal for the integrated use of oil and flocculant. Energies, 12(20), Article 3996. https://doi.org/10.3390/en12203996 DOI: https://doi.org/10.3390/en12203996
25. Martins, G. B. (2014). Effects of nitrogen depletion on biomass and lipid production of three species of phytoplankton microalgae [Dissertação de mestrado em Biologia Vegetal, Centro de Ciências Humanas e Naturais, Universidade Federal do Espírito Santo].
26. Bligh, E. G., & Dyer, W. J. (1959). A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology, 37(8), 911–917. https://doi.org/10.1139/o59-099 DOI: https://doi.org/10.1139/o59-099
27. Scherer, M. D., et al. (2016). Evaluation of flocculation and environmental efficiency of microalgae biomass recovery cultivated in industrial compact photobioreactors. Environmental Management & Sustainability Journal, 5(1), 92–118. https://doi.org/10.19177/rgsa.v5e1201692-118 DOI: https://doi.org/10.19177/rgsa.v5e1201692-118
28. Wu, J., et al. (2015). Evaluation of several flocculants for flocculating microalgae. Bioresource Technology, 197, 495–501. https://doi.org/10.1016/j.biortech.2015.08.094 DOI: https://doi.org/10.1016/j.biortech.2015.08.094
29. Zhu, L., Li, Z., & Hiltunen, E. (2018). Microalgae Chlorella vulgaris biomass harvesting by natural flocculant: Effects on biomass sedimentation, spent medium recycling and lipid extraction. Biotechnology for Biofuels, 11, Article 183. https://doi.org/10.1186/s13068-018-1183-z DOI: https://doi.org/10.1186/s13068-018-1183-z
30. Ferreira, I. N. T., et al. (2024). Separation of free fatty acids and neutral lipids from an aqueous suspension of crude microalgae oil with ethyl acetate. Chemical Engineering Communications, 211(11), 1733–1746. https://doi.org/10.1080/00986445.2024.2383578 DOI: https://doi.org/10.1080/00986445.2024.2383578