COMPARATIVE PERFORMANCE OF DIFFERENT FLOCCULANTS IN THE RECOVERY OF SCENEDESMUS OBLIQUUS BIOMASS WITH LIPID QUANTIFICATION

Authors

  • Jose Lucas da Silva Oliveira Author
  • Kelly Lima de Oliveira Author
  • Egídia Andrade Moraes Author
  • Devany Quintela Soares Author
  • Rodrigo Gomes Pereira Author
  • Francisco Roberto dos Santos Lima Author
  • Mona Lisa Moura de Oliveira Author
  • Kelma Maria dos Santos Pires Cavalcante Author

DOI:

https://doi.org/10.56238/levv16n53-138

Keywords:

Algal Biomass, Bioenergy, Flocculant, Lipids

Abstract

To evaluate the recovery of algal biomass in different harvesting methods of the microalgae Scenedesmus obliquus, using chemical and natural flocculating agents. The experiment was conducted in triplicate, evaluating five flocculating agents, three of which were chemical (sodium hydroxide, ferric chloride, and ferric sulfate) and two of which were natural (chitosan and Moringa oleifera). Flocculation efficiency, biomass recovery yield, and, subsequently, the lipid content (%) of the recovered biomass were analyzed in an integrated manner.  In flocculation efficiency tests with 24 hours of interaction, all flocculants evaluated showed efficiency above 90%, demonstrating the effectiveness of the different agents. Biomass yield ranged from 0.157 g/L to 0.245 g/L, with the highest values observed in treatments with metallic salts. Regarding lipid content, chemical flocculants presented yields of 5.0% to 6.0%, while natural flocculants (Moringa oleifera and chitosan) provided higher levels, ranging from 7.6% to 11%. All flocculating agents evaluated demonstrated high efficiency in recovering algal biomass, with rates exceeding 90%, confirming the effectiveness of both chemical and natural flocculants. Among them, ferric sulfate stood out for presenting the highest biomass yield. On the other hand, the highest lipid content was observed in the biomass recovered by natural flocculants such as chitosan and M. oleifera, suggesting that these natural agents not only enable efficient recovery but also better preserve bioactive components.

Downloads

Download data is not yet available.

References

1. Lourenço, S. O. (2006). Cultivo de microalgas marinhas: Princípios e aplicações. Rima.

2. Goswami, R. K., Agrawal, K., & Verma, P. (2022). Microalgal-based remediation of wastewater: A step towards environment protection and management. Environmental Quality Management, 32(1). https://doi.org/10.1002/tqem.21850 DOI: https://doi.org/10.1002/tqem.21850

3. Hartulistiyoso, E., et al. (2024). Co-production of hydrochar and bioactive compounds from Ulva lactuca via a hydrothermal process. Carbon Resources Conversion, 7(1). https://doi.org/10.1016/j.crcon.2023.05.002 DOI: https://doi.org/10.1016/j.crcon.2023.05.002

4. Liu, Z., Hao, N., Hou, Y., Wang, Q., Liu, Q., Yan, S., Chen, F., & Zhao, L. (2023). Technologies for harvesting the microalgae for industrial applications: Current trends and perspectives. Bioresource Technology, 387, Article 129631. https://doi.org/10.1016/j.biortech.2023.129631 DOI: https://doi.org/10.1016/j.biortech.2023.129631

5. Silva, A. G. M., Freitas, D. M., Silva, K. E. S., Rêgo, Á. P., França, C. L., Vaz, E. C. R., Santos, E. P., & Vasconcelos, R. F. L. (2021). Efficiency of flocculating agents evaluating the flocculation time of the microalgae Chlorella vulgaris (Beyerinck) aiming at the production of biodiesel. Brazilian Applied Science Review, 5(2), 1198–1206. https://doi.org/10.34115/basrv5n2-043 DOI: https://doi.org/10.34115/basrv5n2-043

6. Uduman, N., Qi, Y., Danquah, M., & Hoadley, A. (2010). Marine microalgae flocculation and focused beam reflectance measurement. Chemical Engineering Journal, 935–940. https://doi.org/10.1016/j.cej.2010.06.046 DOI: https://doi.org/10.1016/j.cej.2010.06.046

7. Chen, C. Y., Yeh, K. L., Aisyah, R., Lee, D. J., & Chang, J. S. (2011). Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: A critical review. Bioresource Technology, 102(1), 71–81. https://doi.org/10.1016/j.biortech.2010.06.159 DOI: https://doi.org/10.1016/j.biortech.2010.06.159

8. Chen, L., Wang, C., Wang, W., & Wei, J. (2013). Optimal conditions of different flocculation methods for harvesting Scenedesmus sp. cultivated in an open-pond system. Bioresource Technology, 133, 9–15. https://doi.org/10.1016/j.biortech.2013.01.071 DOI: https://doi.org/10.1016/j.biortech.2013.01.071

9. Roselet, F. F. G. (2015). Flow of cultivation and flocculation of the marine microalgae Nannochloropsis oculata [Tese de doutorado, Universidade Federal do Rio Grande].

10. Marinho, Y. F., et al. (2022). A circular approach for the efficient recovery of astaxanthin from Haematococcus pluvialis biomass harvested by flocculation and water reusability. Science of the Total Environment, 841, Article 156795. https://doi.org/10.1016/j.scitotenv.2022.156795 DOI: https://doi.org/10.1016/j.scitotenv.2022.156795

11. Lu, Z., et al. (2020). Water reuse for sustainable microalgae cultivation: Current knowledge and future directions. Resources, Conservation and Recycling, 161, Article 104975. https://doi.org/10.1016/j.resconrec.2020.104975 DOI: https://doi.org/10.1016/j.resconrec.2020.104975

12. Guillard, R. R. L. (1975). Culture of phytoplankton for feeding marine invertebrates. In M. L. Smith & M. H. Chanley (Eds.), Culture of marine invertebrate animals (pp. 29–60). Plenum Press. https://doi.org/10.1007/978-1-4615-8714-9_3 DOI: https://doi.org/10.1007/978-1-4615-8714-9_3

13. Scherer, M. D., et al. (2018). Environmental evaluation of flocculation efficiency in the separation of the microalgal biomass of Scenedesmus sp. cultivated in full-scale photobioreactors. Journal of Environmental Science and Health, Part A, 53(10), 938–945. https://doi.org/10.1080/10934529.2018.1471093 DOI: https://doi.org/10.1080/10934529.2018.1470961

14. Hamid, S. H. A., et al. (2016). A study of coagulating protein of Moringa oleifera in microalgae bioflocculation. International Biodeterioration & Biodegradation, 113, 310–317. https://doi.org/10.1016/j.ibiod.2016.03.027 DOI: https://doi.org/10.1016/j.ibiod.2016.03.027

15. Elcik, H., et al. (2023). Microalgae biomass harvesting using chitosan flocculant: Optimization of operating parameters by response surface methodology. Separations, 10(9), Article 507. https://doi.org/10.3390/separations10090507 DOI: https://doi.org/10.3390/separations10090507

16. Dolganyuk, V., et al. (2020). Study of morphological features and determination of the fatty acid composition of the microalgae lipid complex. Biomolecules, 10(11), Article 1571. https://doi.org/10.3390/biom10111571 DOI: https://doi.org/10.3390/biom10111571

17. Chen, Z., et al. (2018). Determination of microalgal lipid content and fatty acid for biofuel production. BioMed Research International, 2018, Article 1503126. https://doi.org/10.1155/2018/1503126 DOI: https://doi.org/10.1155/2018/1503126

18. Lee, R. E. (2008). Phycology. Cambridge University Press. https://doi.org/10.1017/CBO9780511812897 DOI: https://doi.org/10.1017/CBO9780511812897

19. Dias, A., et al. (2021). Green coagulants recovering Scenedesmus obliquus: An optimization study. Chemosphere, 262, Article 127881. https://doi.org/10.1016/j.chemosphere.2020.127881 DOI: https://doi.org/10.1016/j.chemosphere.2020.127881

20. Selesu, N. F. H. (2015). Development of microalgae production process in industrial photobioreactor using biodigested swine effluent [Dissertação de mestrado, Curso de Ciência e Engenharia de Materiais, Universidade Federal do Paraná].

21. Jambo, S. A., et al. (2016). A review on third generation bioethanol feedstock. Renewable and Sustainable Energy Reviews, 65, 756–769. https://doi.org/10.1016/j.rser.2016.07.064 DOI: https://doi.org/10.1016/j.rser.2016.07.064

22. Lima, K., et al. (2024). Cultivation of microalgae Chlorella vulgaris, Monoraphidium sp. and Scenedesmus obliquus in wastewater from the household appliance industry for bioremediation and biofuel production. 3 Biotech, 14(12). https://doi.org/10.1007/s13205-024-04123-4 DOI: https://doi.org/10.1007/s13205-024-04142-z

23. Hesse, M. C. S., et al. (2017). Optimization of flocculation with tannin-based flocculant in the water reuse and lipidic production for the cultivation of Acutodesmus obliquus. Separation Science and Technology, 52(5), 936–942. https://doi.org/10.1080/01496395.2016.1269130 DOI: https://doi.org/10.1080/01496395.2016.1269130

24. Ruiz-Marín, A., et al. (2019). Harvesting Scenedesmus obliquus via flocculation of Moringa oleifera seed extract from urban wastewater: Proposal for the integrated use of oil and flocculant. Energies, 12(20), Article 3996. https://doi.org/10.3390/en12203996 DOI: https://doi.org/10.3390/en12203996

25. Martins, G. B. (2014). Effects of nitrogen depletion on biomass and lipid production of three species of phytoplankton microalgae [Dissertação de mestrado em Biologia Vegetal, Centro de Ciências Humanas e Naturais, Universidade Federal do Espírito Santo].

26. Bligh, E. G., & Dyer, W. J. (1959). A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology, 37(8), 911–917. https://doi.org/10.1139/o59-099 DOI: https://doi.org/10.1139/o59-099

27. Scherer, M. D., et al. (2016). Evaluation of flocculation and environmental efficiency of microalgae biomass recovery cultivated in industrial compact photobioreactors. Environmental Management & Sustainability Journal, 5(1), 92–118. https://doi.org/10.19177/rgsa.v5e1201692-118 DOI: https://doi.org/10.19177/rgsa.v5e1201692-118

28. Wu, J., et al. (2015). Evaluation of several flocculants for flocculating microalgae. Bioresource Technology, 197, 495–501. https://doi.org/10.1016/j.biortech.2015.08.094 DOI: https://doi.org/10.1016/j.biortech.2015.08.094

29. Zhu, L., Li, Z., & Hiltunen, E. (2018). Microalgae Chlorella vulgaris biomass harvesting by natural flocculant: Effects on biomass sedimentation, spent medium recycling and lipid extraction. Biotechnology for Biofuels, 11, Article 183. https://doi.org/10.1186/s13068-018-1183-z DOI: https://doi.org/10.1186/s13068-018-1183-z

30. Ferreira, I. N. T., et al. (2024). Separation of free fatty acids and neutral lipids from an aqueous suspension of crude microalgae oil with ethyl acetate. Chemical Engineering Communications, 211(11), 1733–1746. https://doi.org/10.1080/00986445.2024.2383578 DOI: https://doi.org/10.1080/00986445.2024.2383578

Downloads

Published

2025-10-29

How to Cite

OLIVEIRA, Jose Lucas da Silva; DE OLIVEIRA, Kelly Lima; MORAES, Egídia Andrade; SOARES, Devany Quintela; PEREIRA, Rodrigo Gomes; LIMA, Francisco Roberto dos Santos; DE OLIVEIRA, Mona Lisa Moura; CAVALCANTE, Kelma Maria dos Santos Pires. COMPARATIVE PERFORMANCE OF DIFFERENT FLOCCULANTS IN THE RECOVERY OF SCENEDESMUS OBLIQUUS BIOMASS WITH LIPID QUANTIFICATION. LUMEN ET VIRTUS, [S. l.], v. 16, n. 53, p. e9370, 2025. DOI: 10.56238/levv16n53-138. Disponível em: https://periodicos.newsciencepubl.com/LEV/article/view/9370. Acesso em: 5 dec. 2025.