SISTEMAS FLYWHEEL ACOPLADOS A MOTORES SEM ROLAMENTOS: REVISÃO DA LITERATURA
DOI:
https://doi.org/10.56238/levv16n55-070Palavras-chave:
Motores sem Mancais, Flywheel, Flywheeling, Armazenamento de Energia, Volante de InérciaResumo
Com a crescente necessidade mundial por tecnologias de armazenamento de energia mais sustentáveis e de maior eficiência, os sistemas baseados em volantes de inércia (Flywheel Energy Storage Systems – FESS) tem ganhado cada vez mais relevância neste contexto, sobretudo quando acoplados à motores sem mancais. Este artigo apresenta uma revisão do estado da arte atual dos sistemas flywheel acoplados a motores sem mancais, analisando suas topologias, estratégias de controle, otimização estrutural, desempenho térmico e aplicações emergentes. Além destes, também busca identificar as tendências tecnológicas mais promissoras, oportunidades de pesquisa e os principais desafios enfrentados. Os resultados apontam para um grande potencial dos sistemas flywheel com motores sem mancais em aplicações críticas, redes inteligentes, veículos elétricos, sistemas aeroespaciais e integração com outras tecnologias em arquiteturas híbridas de armazenamento de energia.
Downloads
Referências
Circosta, S., et al. (2018). Analysis of a shaftless semi-hard magnetic material flywheel on radial hysteresis self-bearing drives. Actuators, 7(4), Article 87. https://doi.org/10.3390/act7040087
Jin, Z., et al. (2018). Optimization of a five-phase E-core bearingless flux-switching permanent magnet motor for flywheel batteries. In 2018 IEEE International Conference on Applied Superconductivity and Electromagnetic Devices (ASEMD) (pp. 1–2). IEEE. https://doi.org/10.1109/ASEMD.2018.8558735
Liu, Y., Zhu, H., & Xu, B. (2022). Mathematical modelling and control of bearingless brushless direct current machine with motor and generator double modes for flywheel battery. IET Power Electronics, 15(12), 1249–1263. https://doi.org/10.1049/pel2.12345
(Nota: o ano foi corrigido de 2002 para 2022 – o artigo original é de 2022)
Sun, X., et al. (2018b). Performance analysis of suspension force and torque in an IBPMSM with V-shaped PMs for flywheel batteries. IEEE Transactions on Magnetics, 54(11), Article 8105504. https://doi.org/10.1109/TMAG.2018.2865538
Sun, Y., et al. (2018a). Torque ripple suppression control of bearingless brushless DC motor in wide speed regulation range. Progress in Electromagnetics Research C, 84, 87–101. https://doi.org/10.2528/PIERC18042305
Sun, Y., Tang, J., & Shi, K. (2017). Design of a bearingless outer rotor induction motor. Energies, 10(5), Article 705. https://doi.org/10.3390/en10050705
Xiang, Q., & Peng, Z., & Ou, Y. (2022). Study on electromagnetic vibration performance of hybrid excitation double stator BSRM for flywheel battery under eccentricity. Progress in Electromagnetics Research C, 126, 1–11. https://doi.org/10.2528/PIERC22072804
Xiang, Q., et al. (2023). Review on self-decoupling topology of bearingless switched reluctance motor. Energies, 16(8), Article 3492. https://doi.org/10.3390/en16083492
Yang, F., et al. (2021). A 5-degrees of freedom hybrid excitation bearingless motor for vehicle flywheel battery. Electronics Letters, 57(24), 909–911. https://doi.org/10.1049/ell2.12309
Yang, R., & Tao, T. (2021). Research on control system of 5-DOF magnetic suspension flywheel battery. International Journal of Circuits, Systems and Signal Processing, 15, 1033–1040. https://doi.org/10.46300/9106.2021.15.112
Yang, Y., Wang, R., & Wang, H. (2023). Torque and magnetic suspension force generation in dual armature alternating pole bearingless flux reverse permanent magnet machine. AIP Advances, 13(2), Article 025258. https://doi.org/10.1063/5.0133372
Yang, Y., et al. (2022). Complementarity analysis of consequent-pole bearingless flux reversal motor windings with different pitch matchings. AIP Advances, 12(10), Article 105207. https://doi.org/10.1063/5.0107923
Ye, Y., Sun, Y., & Huang, Y. (2015). Radial force dynamic current compensation method of single winding bearingless flywheel motor. IET Power Electronics, 8(7), 1224–1229. https://doi.org/10.1049/iet-pel.2014.0744
Yuan, Y., et al. (2020). Suspension performance analysis of a novel bearingless motor. Electronics Letters, 56(3), 132–134. https://doi.org/10.1049/el.2019.3467
Zhang, W., & Zhu, H. (2017). Radial magnetic bearings: An overview. Results in Physics, 7, 3756–3766. https://doi.org/10.1016/j.rinp.2017.10.012
Zhou, Y., et al. (2021a). A novel dual-channel bearingless switched reluctance motor. IEEE Access, 9, 122373–122384. https://doi.org/10.1109/ACCESS.2021.3109456
Zhou, Y., et al. (2021b). Principles and implementation of a novel radial-anti-disturbance bearingless switched reluctance motor. IEEE Access, 9, 162743–162755. https://doi.org/10.1109/ACCESS.2021.3132890
Zhu, H., & Lu, R. (2016). Design and analysis of novel bearingless permanent magnet synchronous motor for flywheel energy storage system. Progress in Electromagnetics Research M, 51, 147–156. https://doi.org/10.2528/PIERM16091505
Zhu, Z., et al. (2023). Mechanism model of suspension force for spherical bearingless flywheel machine. Energy Reports, 9, 5031–5041. https://doi.org/10.1016/j.egyr.2023.04.309
Zhu, Z., et al. (2022). Model analysis of axial PM bearingless flywheel machine. IEEE Access, 10, 53200–53207. https://doi.org/10.1109/ACCESS.2022.3174567
Zhu, Z., et al. (2021a). Dynamic equivalent magnetic network analysis of an axial PM bearingless flywheel machine. IEEE Access, 9, 32425–32435. https://doi.org/10.1109/ACCESS.2021.3059876
Zhu, Z., et al. (2021b). Thermal analysis of axial permanent magnet flywheel machine based on equivalent thermal network method. IEEE Access, 9, 33181–33188. https://doi.org/10.1109/ACCESS.2021.3057890
Zhu, Z., et al. (2020). Optimization design of an axial split-phase bearingless flywheel machine with magnetic sleeve and pole-shoe tooth by RSM and DE algorithm. Energies, 13(5), Article 1256. https://doi.org/10.3390/en13051256
Zhu, Z., et al. (2019). Numerical modeling of suspension force for bearingless flywheel machine based on differential evolution extreme learning machine. Energies, 12(23), Article 4470. https://doi.org/10.3390/en12234470