ARTIFICIAL INTELLIGENCE IN DIGITAL MARKETING AND E-COMMERCE

Authors

  • Giovani Porfírio Zaniolo Author
  • Guilherme Azevedo Janunzzi Author
  • Luciana Antoniosi Author

DOI:

https://doi.org/10.56238/ERR01v10n6-005

Keywords:

Artificial Intelligence, Digital Marketing, E-commerce

Abstract

This study analyzes how Artificial Intelligence (AI) has been used in digital marketing and e-commerce, highlighting its foundations, applications, and effects on digital businesses. The research adopts a qualitative and investigative approach, based on an analysis of existing literature, addressing the theoretical application of AI through tools such as chatbots and recommendation systems. The results indicate that Artificial Intelligence enables the adaptation of products to individual preferences and needs, the provision of personalized recommendations, the creation of tailored advertisements, and the implementation of adjustments in digital platforms. Moreover, it allows for task automation and increased effectiveness in marketing actions, contributing to the optimization of consumer experience and the growth of financial profit. The study also highlights relevant challenges, such as the need for an adequate technological infrastructure, the training of qualified professionals, high operational costs, and ethical and legal implications, especially regarding data protection. It is concluded that AI represents a significant advancement for digital marketing, provided that it is applied in an organized, responsible, and conscious manner, considering the challenges it entails. Furthermore, digital marketing stands out as an essential field for the practical application of Artificial Intelligence, since it is within this context that personalized strategies, real-time data analysis, and audience segmentation become more effective. The integration between AI and digital marketing enhances business results, allowing for more assertive communication, more relevant consumer experiences, and a more competitive brand positioning in the market.

Downloads

Download data is not yet available.

References

ABCOMM. E-commerce fatura R$ 204,3 bilhões no Brasil em 2024. Disponível em: https://www.ecommercebrasil.com.br/noticias/e-commerce-resultados-2024-brasil-abcomm. Acesso em: 14 out. 2025.

ALURA. Inteligência artificial no marketing digital – impactos e oportunidades. 2024. Disponível em: https://www.alura.com.br/artigos/inteligencia-artificial-no-marketing-digital. Acesso em: 29 maio 2025.

ALI, C. S.; ZEEBAREE, S. R. Personalization in Digital Marketing: Leveraging Machine Learning for E-Commerce. Asian Journal of Research in Computer Science, v. 18, n. 3, p. 105-129, 2025. Disponível em: https://journalajrcos.com/index.php/AJRCOS/article/view/582. Acesso em: 23 out. 2025.

AMARAL, Sueli Angélica do. Os 4Ps do composto de marketing na literatura de Ciência da Informação. Transinformação, v. 12, n. 2, p. 51-60, 2000. Disponível em: https://www.scielo.br/j/tinf/a/ZfqDJFzykWbMRcYCJJQhQgR/abstract/?lang=pt. Acesso em: 17 nov. 2024.

ANTUNES, D. O impacto da inteligência artificial no marketing digital. The Trends Hub, n. 3, 2023. Disponível em: https://doi.org/10.34630/tth.vi3.5085. Acesso em: 19 nov. 2024.

BELLINI, Carlos Henrique; DEZANI, Claudio. As aplicações da inteligência artificial no marketing digital: um estudo exploratório em uma pequena empresa no segmento de Trading Card Games. Informática e Negócios, v. 1, n. 1, 2024. Disponível em: https://seer.uscs.edu.br/index.php/informaticanegocios/article/view/12120. Acesso em: 29 maio 2025.

BRAGA E SILVA, Carlos Henrique. Inteligência artificial e Big Data na automação de objetos. 2022. Trabalho de Conclusão de Curso (Graduação em Ciências da Computação) – Faculdade Pitágoras, Belo Horizonte. Disponível em: https://repositorio.pgsscogna.com.br/bitstream/123456789/65240/1/CARLOS_HENRIQUE_BRAGA_E_SILVA.pdf. Acesso em: 20 nov. 2024.

CARVALHO, Geovane. A inteligência artificial na criação de conteúdo publicitário. Natal: Universidade Federal do Rio Grande do Norte, 2024. Disponível em: https://repositorio.ufrn.br/handle/123456789/59167. Acesso em: 20 nov. 2024.

CHEN, H.; ZHANG, Z. Artificial intelligence in marketing: Enhancing investment efficiency and customer engagement. Journal of Business Research, v. 120, p. 182-193, 2020.

DUNKA, T. AI-Based Dynamic Pricing Strategies in Retail: Utilizing Machine Learning for Real-Time Price Optimization, Competitive Analysis, and Customer Segmentation. African Journal of Artificial Intelligence and Sustainable Development, v. 2, n. 1, p. 34–47, 2022. Disponível em: https://africansciencegroup.com/index.php/AJAISD/article/view/202. Acesso em: 23 out. 2025.

DESAI, Vaibhava. Digital marketing: a review. International Journal of Trend in Scientific Research and Development (IJTSRD), Special Issue, Mar. 2019, p. 196–200. Disponível em: https://www.ijtsrd.com/papers/ijtsrd23100.pdf. Acesso em: 9 jun. 2024.

ENICOMP MEDIA. How AI is Enhancing Emotion Recognition in Marketing. [S.l.], [s.d.]. Disponível em: https://enicomp.com/how-ai-is-enhancing-emotion-recognition-in-marketing/. Acesso em: 23 out. 2025.

EDRONE. E-commerce no Brasil 2025: dados e cenário atual. Disponível em: https://edrone.me/pt/blog/dados-ecommerce-brasil. Acesso em: 14 out. 2025.

FOOTE, K. D. A brief history of machine learning. Dataversity, 2019. Disponível em: https://www.dataversity.net/a-brief-history-of-machine-learning/. Acesso em: 9 jun. 2024.

GALLANT, Stephen I. Perceptron-based learning algorithms. IEEE Transactions on Neural Networks, v. 1, n. 2, p. 179-191, jun. 1990.

GLOBANT CREATE. Habilidades incríveis: como a IA está mudando o papel do especialista em marketing. 2023. Disponível em: https://reports.globant.com/pt-br/ia-aplicada-em-marketing/. Acesso em: 9 jun. 2024.

GUNGUNAWAT, R.; KHANDELWAL, M.; GUPTA, A. AI-Powered Personalization in Digital Marketing: Transforming Consumer Engagement and Strategy. Research Review International Journal of Multidisciplinary, v. 9, n. 5, p. 56-64, 2024. Disponível em: https://rrjournals.com/index.php/rrijm/article/view/1640. Acesso em: 23 out. 2025.

GOMES, Dennis dos Santos. Inteligência Artificial: Conceitos e Aplicações. Revista Olhar Científico – Faculdades Associadas de Ariquemes, v. 01, n. 2, ago./dez. 2010. Disponível em: https://www.professores.uff.br/screspo/wp-content/uploads/sites/127/2017/09/ia_intro.pdf. Acesso em: 14 out. 2025.

KANEZAKI, Amanda et al. Marketing digital: contribuições da inteligência artificial na criação de conteúdo estratégico personalizado. Revista Arev, v. 6, n. 4, 2024. Disponível em: https://revistas.pucsp.br/index.php/arev/article/view/66086. Acesso em: 29 maio 2025.

KOTLER, Philip; KARTAJAYA, Hermawan; SETIAWAN, Iwan. Marketing 4.0: do tradicional ao digital. 1. ed. São Paulo: Sextante, 2017. ISBN 978-85-431-0533-8.

MDIC. Relatório da Confi aponta comportamentos de compra no e-commerce brasileiro. Disponível em: https://www.ecommercebrasil.com.br/noticias/relatorio-da-confi-aponta-comportamentos-de-compra-no-e-commerce-brasileiro. Acesso em: 14 out. 2025.

SOFTDESIGN. Desafios da inteligência artificial: principais barreiras e soluções. 2024. Disponível em: https://softdesign.com.br/blog/desafios-da-inteligencia-artificial/. Acesso em: 29 maio 2025.

SICHMAN, José S. Inteligência Artificial e sociedade: avanços e riscos. Revista Brasileira de Política Internacional, v. 64, n. 2, p. 1-17, 2021. Disponível em: https://www.scielo.br/j/ea/a/c4sqqrthGMS3ngdBhGWtKhh. Acesso em: 14 out. 2025.

Published

2025-11-04

Issue

Section

Articles

How to Cite

ARTIFICIAL INTELLIGENCE IN DIGITAL MARKETING AND E-COMMERCE. (2025). ERR01, 10(6), e9593. https://doi.org/10.56238/ERR01v10n6-005