TÉCNICA ALTERNATIVA PARA A RESTAURAÇÃO DE MÚLTIPLAS LESÕES CERVICAIS NÃO CARIOSAS COM UM COMPÓSITO DENTÁRIO AUTOPOLIMERIZÁVEL
DOI:
https://doi.org/10.56238/arev7n11-081Palavras-chave:
Cimento de Ionômero de Vidro, Abrasão Dental, Restauração Guiada, Lesões Cervicais não CariosasResumo
Recentemente, foi desenvolvido um compósito dentário autopolimerizável (Stela, SDI, Austrália) com vantagens como baixa tensão e contração de polimerização, profundidade de ativação ilimitada, homogeneidade na conversão do polímero, polimerização rápida, boa adesão ao tecido dentário, menor número de etapas clínicas e efeito camaleônico. Suas indicações incluem a restauração de cavidades de Classe V. No entanto, isso requer manobras adicionais de contenção e determinação da forma. Lesões cervicais não cariosas (LCNCs) envolvendo dentes posteriores são comuns, e sua restauração apresenta dificuldades em termos de isolamento, instrumentação, acabamento e polimento. Este estudo apresenta uma técnica alternativa que utiliza o Stela com um guia de silicone transparente para injeção direta. Após moldagem da região com lesões cervicais não cariosas (LCNC), confecção de modelos e enceramento diagnóstico das restaurações, foi confeccionado um guia de injeção personalizado. Em consulta subsequente, com o guia pronto e testado quanto à adaptação e estabilidade, foram realizados os seguintes passos restauradores: profilaxia, inserção de fio de retração não impregnado, aplicação de adesivo, posicionamento do guia e injeção de resina. Após 4 minutos, o guia foi removido e as restaurações foram finalizadas e polidas. Essa técnica simplificou o processo com alta previsibilidade e eficiência.
Downloads
Referências
Peumans M, Politano G, Van Meerbeek B. Treatment of noncarious cervical lesions: when, why, and how. International Journal of Esthetic Dentistry, v.15, n.1, p.16–42, 2020.
Perez CR et al. Restoration of noncarious cervical lesions: when, why, and how. International Journal of Dentistry, 2012:687058, 2012. https://doi.org/10.1155/2012/687058.
Correia AMO et al. Polymerization shrinkage stresses in different restorative techniques for non-carious cervical lesions. Journal of Dentistry, v.76, p. 68–74, Jun 2018. https://doi.org/10.1016/j.jdent.2018.06.010.
Dionysopoulos D et al. The evaluation of various restoration techniques on internal adaptation of composites in class V cavities. International Journal of Biomaterials, 2014:148057, Oct 2014. https://doi.org/10.1155/2014/148057.
Perez CR. Alternative technique for class V resin composite restorations with minimum finishing/polishing procedures. Operative Dentistry, v. 35, n.3, p.375–379, May-Jun 2010. https://doi.org/10.2341/09-310-TR.
Fahl N Jr. Direct-indirect class V restorations: a novel approach for treating noncarious cervical lesions. Journal of Esthetic Restorative Dentistry, v.27, n.5, p.267–284, Jun 2015. https://doi.org/10.1111/jerd.12151.
Chee HT et al. Comparison of composite resin and porcelain inlays for restoration of noncarious cervical lesions: an in vitro study. Dental Research Journal (Isfahan), v.15, n.3, p.215–219, May-Jun 2018.
Caneppele TMF et al. A 2-year clinical evaluation of direct and semi-direct resin composite restorations in non-carious cervical lesions: a randomized clinical study. Clinical Oral Investigations, v.24, n.3, p.1321–1331, Jul 2020. https://doi.org/10.1007/s00784-019-03011-x.
Srirekha A, Bashetty K. A comparative analysis of restorative materials used in abfraction lesions in tooth with and without occlusal restoration: Three-dimensional finite element analysis. Journal of Conservative Dentistry, v.16, n.2, p.157–161, Mar 2013. https://doi.org/10.4103/0972-0707.108200.
Peumans M et al. Restoring cervical lesions with flexible composites. Dental Materials, v. 23, p.749–754, 2007. https://doi.org/10.1016/j.dental.2006.06.013.
Reis A, Loguercio AD. A 24-month follow-up of flowable resin composite as an intermediate layer in non-carious cervical lesions. Operative Dentistry, v.31, n.6, p.523–529, Jun 2006. https://doi.org/10.2341/05-116.
Szesz A et al.. Effect of flowable composites on the clinical performance of non-carious cervical lesions: a systematic review and meta-analysis. Journal of Dentistry, v.65, p.11–21, Oct 2017. https://doi.org/10.1016/j.jdent.2017.07.007.
Cieplik F et al. Flowable composites for restoration of non-carious cervical lesions: Results after five years. Dental Materials, v.33, e428–e437, 2017. https://doi.org/10.1016/j.dental.2017.09.012.
Canali GD et al.. One-year clinical evaluation of bulk-fill flowable vs. regular nanofilled composite in non-carious cervical lesions. Clinical Oral Investigations, v.23, n.12 p.889–897, Dec 2019. https://doi.org/10.1007/s00784-018-2509-8.
Tauböck TT et al.. Polymerization shrinkage and shrinkage force kinetics of high- and low-viscosity dimethacrylate- and ormocer-based bulk-fill resin composites. Odontology, v.107, n.1, p.103–110, Jan 2019. https://doi.org/10.1007/s10266-018-0369-y.
Rizzante FAP et al. Polymerization shrinkage, microhardness and depth of cure of bulk fill resin composites. Dental Materials Journal, v.38, n.3, p.403–410, Mar 2019 https://doi.org/10.4012/dmj.2018-063.
Sampaio CS et al. Volumetric polymerization shrinkage and its comparison to internal adaptation in bulk fill and conventional composites: a μCT and OCT in vitro analysis. Dental Materials, v.35, n.11, p.1568–1575, Nov 2019. https://doi.org/10.1016/j.dental.2019.07.025.
Burrer P et al. Effect of polymerization mode on shrinkage kinetics and degree of conversion of dual-curing bulk-fill resin composites. Clinical Oral Investigations, v.27, n.6, p.3169–3180, Jun 2023. https://doi.org/10.1007/s00784-023-04928-0.
Münchow EA et al. Polymerization shrinkage stress of resin-based dental materials: a systematic review and meta-analyses of technique protocol and photo-activation strategies. Journal of Mechanical Behaviour in Biomedical Materials, v.82, p.77–86, Jun 2018. https://doi.org/10.1016/j.jmbbm.2018.03.004.
Pires PM et al. Bonding performance and interfacial adaptation of modern bulk-fill restorative composites after aging in artificial saliva: an in vitro study. Clinical Oral Investigations, v.28, n.2, p.132, Feb 2024. https://doi.org/10.1007/s00784-024-05525-5.
Thadathil Varghese J et al. Comparative analysis of self-cure and dual cure-dental composites on their physico-mechanical behaviour. Australian Dental Journal, v.69, n.2, p.124–138, Jun 2024. https://doi.org/10.1111/adj.13004.
Kouri V et al. Accuracy of direct composite veneers via injectable resin composite and silicone matrices in comparison to diagnostic wax-up. Journal of Functional Biomaterials, v.14, n.1, p.32–46, Jan 2023. https://doi.org/10.3390/jfb14010032.
Geštakovski D. The injectable composite resin technique: biocopy of a natural tooth - advantages of digital planning. International Journal of Esthetic Dentistry, v.16, n.3, p.280–299, Aug 2021.
Oliveira B et al. Chemical interaction analysis of an adhesive containing 10-methacryloyloxydecyl dihydrogen phosphate (10-MDP) with the dentin in noncarious cervical lesions. Operative Dentistry, v.42, n.4, p.357–366, Jul-Ago 2017. https://doi.org/10.2341/16-062-L.
Oliveira B et al. Chemical interaction and interface analysis of self-etch adhesives containing 10-MDP and methacrylamide with the dentin in noncarious cervical lesions. Operative Dentistry, v.43, n.5, E253–E265, Sep-Oct 2018. https://doi.org/10.2341/17-366-L.
Saengnil W et al. A retrospective clinical study on factors influencing the failure of NCCL restorations. International Journal of Dentistry, 2022:8048265, 2022. https://doi.org/10.1155/2022/8048265.
Carrilho E et al. 10-MDP based dental adhesives: adhesive interface characterization and adhesive stability-a systematic review. Materials (Basel), v.12, p.790, Apr 2019. https://doi.org/10.3390/ma12050790.