INCLUSÃO DO TENÉBRIO GIGANTE (ZOPHOBAS MORIO) COMO FONTE PROTEICA ALTERNATIVA EM DIETAS PARA CAMARÃO P.VANNAMEI (BOONE,1931)

Autores

  • Vanuza de Paula do Nascimento da Silva Autor
  • Fernanda Reis Lima Autor
  • Léa Carolina de Oliveira Costa Autor
  • Saymon Rodrigues Matos da Costa Autor
  • Jackson Oliveira Andrade Autor
  • Danilo Acatauassu da Silva Costa Autor
  • Lian Valente Brandão Autor

DOI:

https://doi.org/10.56238/arev7n12-206

Palavras-chave:

Zophobas morio, Proteína Alternativa, Penaeus vannamei

Resumo

Este trabalho investiga a inclusão do Tenébrio gigante (Zophobas morio) como uma fonte proteica alternativa em dietas para o camarão Penaeus vannamei (Boone, 1931). O objetivo principal é avaliar os efeitos dessa inclusão na performance de crescimento dos camarões. A metodologia utilizada envolveu a formulação de dietas experimentais com diferentes níveis de inclusão de Zophobas morio e a realização de ensaios de alimentação em condições controladas. Os resultados indicaram que a inclusão do Tenébrio gigante pode substituir totalmente a farinha de peixe sem comprometer o desempenho dos camarões, além de apresentar benefícios adicionais em termos de saúde e sustentabilidade ambiental. Conclui-se que o Zophobas morio é uma alternativa viável e promissora para a formulação de dietas para camarões, contribuindo para a diversificação das fontes proteicas na aquicultura.

Downloads

Os dados de download ainda não estão disponíveis.

Referências

ABE, Marcos Paulo; FRÓES, Charles Nunes; PRENTICE-HERNÁNDEZ, Carlos; JÚNIOR, Wilson Wasielesky; CAVALLI, Ronaldo Oliveira. Substituição da Farinha de peixe por farelo de soja em dietas práticas para camarões-rosa (Farfantepenaeus paulensis). Ciência Rural-V.38, n.1, (p.219-224), janeiro- fevereiro de 2008. DOI: https://doi.org/10.1590/S0103-84782008000100035

Amaya, E., Davis, D. A., & Rouse, D. B. (2021). "Substitution of fishmeal by soybean meal in practical diets for the Pacific white shrimp, Litopenaeus vannamei." Aquaculture, 231(1), 197-203. DOI: https://doi.org/10.1016/j.aquaculture.2003.08.023

Associação of Official Analytical Chemists (AOAC). Official Methods of Analysis. 16. ed. Arlington: AOAC International, 1995.

ARAÚJO, Rafael Ribeiro; BENFICA, Tatiana Aparecida R.d.Santos; FERRAZ, Vany Perpétua; SANTOS, Eleonice Moreira. Nutritional composition of Gryllus assimilis and Zophobas morio: Potential foods harvested in Brazil. ScienceDirect, Journal of Food Composition and Analysis. Vol 76, (pag 22-26) março de 2019. Disponível em: . DOI: https://doi.org/10.1016/j.jfca.2018.11.005

AVNIMELECH, Y., 2012. Biofloc Technology: A Practical Guide Book, 2nd ed. The World Aquaculture Society, Baton Rouge.

AVNIMELECH, Y.; CROPPER, M. L. Bioflocs technology: a new approach to intensive aquaculture. Israeli Journal of Aquaculture – Bamidgeh, v. 46, n. 4, p. 455-462, 1994.

AVNIMELECH, Y. 1999. Carbon: nitrogen ratio as a control elementin aquaculture systems. Aquaculture 176: 227-235.AVNIMELECH, Y. 2009. Biofloc Technology–A Practical GuideBook. The World Aquaculture Society, Baton Rouge, USA.182 p. DOI: https://doi.org/10.1016/S0044-8486(99)00085-X

AZMAN KASAN, N., AYUNI GHAZ, N., CHE HASHIM, N.F., JAUHARI, I., JUSOH, A., Ikhwanuddi, M., 2018. 18s rDNA Sequence Analysis of Microfungi from Biofloc-based System in Pacific Whiteleg Shrimp, Litopenaeus vannamei Culture. Biotechnology(Faisalabad) 17, 135–141. <https://doi.org/10.3923/biotech.2018.135.141> DOI: https://doi.org/10.3923/biotech.2018.135.141

BARBOSA, P. T. L., PIRES, L. B., PLATES, M. F. M., MARTINS, T. X., GONSALO, T., POVH, J. A., & CORREA FILHO, R. A. C. (2017). Disponível em:

BENZERTIHA, A., KIEROŃCZYK, B., KOŁODZIEJSKI, P., PRUSZYŃSKA-OSZMAŁEK, E., RAWSKI, M., JÓZEFIAK, D., & JÓZEFIAK, A. (2020). Tenebrio molitor and Zophobas morio full- fat meals as functional feed additives affect broiler chickens’ growth performance and immune system traits. Poultry Science, 196– 206. Disponível em: DOI: https://doi.org/10.3382/ps/pez450

BRAGA, A., MAGALHÃES, V., HANSON, T., MORRIS, T.C., SAMOCHA, T.M., 2016. The effects of feeding commercial feed formulated for semi-intensive systems on Litopenaeus vannamei production and its profitability in a hyper-intensive biofloc-dominated system. Aquac. Reports 3, 172–177. Disponível em: <https://doi.org/10.1016/j.aqrep.2016.03.002> DOI: https://doi.org/10.1016/j.aqrep.2016.03.002

BURFORD, M.A., THOMPSON, P.J., MCINTOSH, R.P., BAUMAN, R.H., PEARSON, D.C., 2004. The contribution of flocculated material to shrimp (Litopenaeus vannamei) nutrition in a high- intensity, zero-exchange system. Aquaculture 232, 525–537. Disponível em: <https://doi.org/10.1016/S0044-8486(03)00541-6> DOI: https://doi.org/10.1016/S0044-8486(03)00541-6

BOYD, C. E. (1984). Water Quality in Warmwater Fish Ponds. Auburn University, Alabama Agricultural Experiment Station.

CASTRO, Talison de. Obtenção e análise da composição centesimal de farinha de larvas de Tenebrio molitor.Disponível em: https://riu.ufam.edu.br/bitstream/prefix/5957/7/TCC_ThalisonCastro.pdf. Acesso em: 5 set. 2024.

CLIFFORD III, H.C. 1992. Marine shrimp pond management: a review. pp. 110-137. In: Wyban, J., (editor). 1992. Proceedings of the Special Session on Shrimp Farming. World Aquaculture Society, Baton Rouge, LA. U.S.A.

de SOUZA, D.M., BORGES, V.D., FURTADO, P., ROMANO, L.A., WASIELESKY, W., MONSERRAT, J.M., DE OLIVEIRA GARCIA, L., 2016. Antioxidant enzyme activities and immunological system analysis of Litopenaeus vannamei reared in biofloc technology (BFT) at different water temperatures. Aquaculture 451, 436–443. Disponível em: <https://doi.org/10.1016/j.aquaculture.2015.10.006> DOI: https://doi.org/10.1016/j.aquaculture.2015.10.006

de SOUZA, D.M., MARTINS, Á.C., JENSEN, L., WASIELESKY, W., MONSERRAT, J.M., GARCIA, L. DE O., 2014. Effect of temperature on antioxidant enzymatic activity in the Pacific white shrimp Litopenaeus vannamei in a BFT (Biofloc technology) system. Mar. Freshw. Behav. Physiol. 47, 1–10. Disponível em:<https://doi.org/10.1080/10236244.2013.857476> DOI: https://doi.org/10.1080/10236244.2013.857476

EBELING, J.M., TIMMONS, M.B., BISOGNI, J.J., 2006. Engineering analysis of the stoichiometry of photoautotrophic, autotrophic, and heterotrophic removal of ammonia–nitrogen in aquaculture systems. Aquaculture 257, 346–358.Disponível em: <https://doi.org/10.1016/j.aquaculture.2006.03.019> DOI: https://doi.org/10.1016/j.aquaculture.2006.03.019

EDIBLE INSECTS: future prospects for food and feed security. Rome: (FAO, 2013).

FERREIRA, G.S., SILVA, V.F., MARTINS, M.A., DA SILVA, A.C.C.P., MACHADO, C., SEIFFERT, W.Q., DO NASCIMENTO VIEIRA, F., 2020. Strategies for ammonium and nitrite control in Litopenaeus vannamei nursery systems with bioflocs. Aquac. Eng. 88, 102040.Disponível em: <https://doi.org/10.1016/j.aquaeng.2019.102040> DOI: https://doi.org/10.1016/j.aquaeng.2019.102040

FERREIRA, M.G.P., MELO, F.P., LIMA, J.P. V., ANDRADE, H.A., SEVERI, W., CORREIA, E.S., 2017. Bioremediation and biocontrol of commercial probiotic in marine shrimp culture with biofloc. Lat. Am. J. Aquat. Res. 45, 167–176. Disponível em:<https://doi.org/10.3856/vol45-issue1-fulltext- 16> DOI: https://doi.org/10.3856/vol45-issue1-fulltext-16

FREITAS, Igor Santos; NUNES, César Antunes Rocha; SALES, André Luis Batista. Nutrição e alimentação de camarões do gênero Macrobrachium (Bate, 1868) (CRUSTACEA: DECAPODA:

PALAEMONIDAE). Publicado em: Revista sustentável, vol. 4, N 1 (pag 17-28). 2022.Disponível em:< https://sertaosustentavel.com.br/index.php/home/article/view/57>

FURTADO, P.S., POERSCH, L.H., WASIELESKY, W., 2015. The effect of different alkalinity levels on Litopenaeus vannamei reared with biofloc technology (BFT). Aquac. Int. 23, 345–358. Disponível em: <https://doi.org/10.1007/s10499-014-9819-x> DOI: https://doi.org/10.1007/s10499-014-9819-x

FURTADO, P.S., POERSCH, L.H., WASIELESKY, W., 2011. Effect of calcium hydroxide, carbonate and sodium bicarbonate on water quality and zootechnical performance of shrimp Litopenaeus vannamei reared in bio-flocs technology (BFT) systems. Aquaculture 321, 130–135.Disponível em: <https://doi.org/10.1016/j.aquaculture.2011.08.034> DOI: https://doi.org/10.1016/j.aquaculture.2011.08.034

GADELHA, J. R., SILVA, C. A., & SANTOS, M. A. (2009). Qualidade da água na aquicultura: parâmetros e monitoramento. Revista Brasileira de Aquicultura, 31(4), 123-135.

GASCO, L.; HENRY, M.; PICCOLO, G.; FONTOULAKI, E. Review on the use of insects in the diet of farmed fish: past and future. Animal Feed Science and Technology, v. 203, p. 1-22, 2016.HENRY, M., Gasco, L., Piccolo, G., & Fountoulaki, E. (2018). "Review on the use of insects in the diet of farmed fish: past and future." Animal Feed Science.

GAONA, C. A. P., DE ALMEIDA, M. S., VIAU, V., POERSCH, L. H., & WASIELESKY, W. (2017). Effect of different total suspended solids levels on a Litopenaeus vannamei (Boone, 1931) BFT culture system during biofloc formation. Aquaculture Research, 48(3), 1070–1079.Disponível em: <https://doi.org/10.1111/are.12949> DOI: https://doi.org/10.1111/are.12949

HARUN, A.A.C., MOHAMMAD, N.A.H., IKHWANUDDIN, M., JAUHARI, I., SOHAILI, J., KASAN, N.A., 2019. Effect of different aeration units, nitrogen types and inoculum on biofloc formation for improvement of Pacific Whiteleg shrimp production. Egypt. J. Aquat. Res. 45, 287–292.Disponível em:<https://doi.org/10.1016/j.ejar.2019.07.001> DOI: https://doi.org/10.1016/j.ejar.2019.07.001

HAMIDOGHLI, A., YUN, H., SHAHKAR, E., WON, S., HONG, J., BAI, S.C., 2018. Optimum dietary protein-to-energy ratio for juvenile whiteleg shrimp, Litopenaeus vannamei, reared in a biofloc system. Aquac. Res. 49, 1875–1886. Disponível em: <https://doi.org/10.1111/are.13643.> DOI: https://doi.org/10.1111/are.13643

HENRY, M.; GASCO, L.; PICCOLO, G.; FONTOULAKI, E. Review on the use of insects in the diet of farmed fish: past and future. Animal Feed Science and Technology, v. 203, p. 1-22, 2018. DOI: https://doi.org/10.1016/j.anifeedsci.2015.03.001

HUERTA-RÁBAGO, J.A., MARTÍNEZ-PORCHAS, M., MIRANDA-BAEZA, A., NIEVES-SOTO, M., RIVAS-VEGA, M.E., MARTÍNEZ-CÓRDOVA, L.R., 2019. Addition of commercial probiotic in a biofloc shrimp farm of Litopenaeus vannamei during the nursery phase: Effect on bacterial diversity using massive sequencing 16S rRNA. Aquaculture 502, 391–399.Disponível em: <https://doi.org/10.1016/j.aquaculture.2018.12.055> DOI: https://doi.org/10.1016/j.aquaculture.2018.12.055

HUIS, A. Van. (2013). Potential of Insects as Food and Feed in Assuring Food Security. Annual Review of Entomology, 58(1), 563-583. Disponível em: <https://www.annualreviews.org/doi/full/10.1146/annurev-ento-120811-153704> DOI: https://doi.org/10.1146/annurev-ento-120811-153704

JABIR, M. A. R., JABIR, S. A. R., & VIKINESWARY, S. (2012). Nutritional potential and utilization of worm meal (Zophobas morio) in the diet of juvenile Nile-tilapia (Oreochromis niloticus). Revista Africana de Biotecnologia, 11(24), 6592–6598. DOI: https://doi.org/10.5897/AJB11.1084

JORY,Darryl E. manejo integral del alimento de camarón, de estanques de producción camaroneros, y principios de bioseguridad. Monterrey, Nuevo León, México. (4-76 páginas), marzo,2001.

KRUMMENAUER, D., SAMOCHA, T., POERSCH, L., LARA, G., WASIELESKY, W., 2014. The Reuse of Water on the Culture of Pacific White Shrimp, Litopenaeus vannamei, in BFT System. J. World Aquac. Soc. 45, 3–14. Disponível em:<https://doi.org/10.1111/jwas.12093> DOI: https://doi.org/10.1111/jwas.12093

KHANJANI, M.H., ALIZADEH, M., SHARIFINIA, M., 2020. Rearing of the Pacific white shrimp, Litopenaeus vannamei in a biofloc system: The effects of different food sources and salinity levels. Aquac. Nutr. 26, 328–337. Disponível em:<https://doi.org/10.1111/anu.12994> DOI: https://doi.org/10.1111/anu.12994

LLARIO, FALCO, SEBASTIÁ-FRASQUET, ESCRIVÁ, RODILLA, POERSCH, 2019. The Role of Bacillus amyloliquefaciens on Litopenaeus vannamei During the Maturation of a Biofloc System. J. Mar. Sci. Eng. 7, 228.Disponível em: <https://doi.org/10.3390/jmse7070228> DOI: https://doi.org/10.3390/jmse7070228

MARQUES, H. L. A.; ANDREATTA, E. R. The effect of temperature, salinity and nitrogen on shrimp behavior. Brazilian Archives of Biology and Technology, Curitiba, v. 41, n. 2, p. 123-130, 1998.

MAKKAR, H. P. S., TRAN, G., Heuzé, V., & ANKERS, P. (2014). State-of-the-Art on Use of Insects as Animal Feed. Animal Feed Science and Technology, 197, 1-33. DOI: https://doi.org/10.1016/j.anifeedsci.2014.07.008

Métodos para determinação da composição centesimal de alimentos. Disponível em:<https://files.cercomp.ufg.br/weby/up/128/o/Composição_Centesimal_-_LANAL- UFG.pdf?1545408882>. Acesso em: 5 set. 2024.

NISAR, U., PENG, D., MU, Y., SUN, Y., 2022. A Solution for Sustainable Utilization of Aquaculture Waste: A Comprehensive Review of Biofloc Technology and Aquamimicry. Front. Nutr. 8. Disponível em: <https://doi.org/10.3389/fnut.2021.791738> DOI: https://doi.org/10.3389/fnut.2021.791738

NOWAK, V.; Du, J.; CHARRONDIÈRE, U. R. Assessment of the nutritional composition of quinoa (Chenopodium quinoa Willd.). Food Chemistry, v. 193, p. 47-54, 2016. DOI: https://doi.org/10.1016/j.foodchem.2015.02.111

OGELLO, E.O., OUTA, N.O., OBIERO, K.O., KYULE, D.N., MUNGUTI, J.M., 2021. The prospects of biofloc technology (BFT) for sustainable aquaculture development. Sci. African 14, e01053. Disponível em: <https://doi.org/10.1016/j.sciaf.2021.e01053> DOI: https://doi.org/10.1016/j.sciaf.2021.e01053

Organização das Nações Unidas para a Agricultura e Alimentação (FAO, 2020). Organização das Nações Unidas para a Agricultura e Alimentação (FAO, 2022).

OLIVEIRA, J.C.; JACKSON, A.J. Fornecimento global de farinha de peixe e óleo de peixe: entradas, saídas e mercados. J. Peixe Biol., v.83, p.1046-1066, 2013.

PACHECO-VEGA, J.M., CADENA-ROA, M.A., LEYVA-FLORES, J.A., ZAVALA-LEAL, O.I., PÉREZ-BRAVO, E., RUIZ-VELAZCO, J.M.J., 2018. Effect of isolated bacteria and microalgae on the biofloc characteristics in the Pacific white shrimp culture. Aquac. Reports 11, 24–30. Disponível em: <https://doi.org/10.1016/j.aqrep.2018.05.003> DOI: https://doi.org/10.1016/j.aqrep.2018.05.003

PANIGRAHI, A., SUNDARAM, M., SARANYA, C., SWAIN, S., DASH, R.R., DAYAL, J.S., 2019.

Carbohydrate sources differentially influence growth performances, microbial dynamics and immunomodulation in Pacific white shrimp (Litopenaeus vannamei) under the biofloc system. Fish Shellfish Immunol. 86, 1207–1216. Disponível em: <https://doi.org/10.1016/j.fsi.2018.12.040>. DOI: https://doi.org/10.1016/j.fsi.2018.12.040

PINTO, P.H.O., ROCHA, J.L., DO VALE FIGUEIREDO, J.P., CARNEIRO, R.F.S., DAMIAN, C., DE OLIVEIRA, L., SEIFFERT, W.Q., 2020. Culture of marine shrimp (Litopenaeus vannamei) in biofloc technology system using artificially salinized freshwater: Zootechnical performance, economics and nutritional quality. Aquaculture 520, 734960. Disponível em:<https://doi.org/10.1016/j.aquaculture.2020.734960> DOI: https://doi.org/10.1016/j.aquaculture.2020.734960

PRCHOM, Noratat; BOONYOUNG, Suttisak; HASSAAN, S. Mohamed; EL-HAROUN, Ehab; DAVIES, Simon J. Preliminary evaluation of Super worm larval flour (Zophobas morio) as Partial source of protein in experimental diets for juvenile sea bass Asian, lates calcarifer, (1–26 páginas), maio de 2021.

RAY, A.J., LEWIS, B.L., BROWDY, C.L., LEFFLER, J.W., 2010. Suspended solids removal to improve shrimp (Litopenaeus vannamei) production and an evaluation of a plant-based feed in minimal-exchange, superintensive culture systems. Aquaculture 299, 89–98. Disponível em: <https://doi.org/10.1016/j.aquaculture.2009.11.021> DOI: https://doi.org/10.1016/j.aquaculture.2009.11.021

RAJKUMAR, M., PANDEY, P.K., ARAVIND, R., VENNILA, A., BHARTI, V., PURUSHOTHAMAN, C.S., 2016. Effect of different biofloc system on water quality, biofloc composition and growth performance in Litopenaeus vannamei (Boone, 1931). Aquac. Res. 47, 3432– 3444. Disponível em: <https://doi.org/10.1111/are.12792> DOI: https://doi.org/10.1111/are.12792

RUMBOS, C. I.; ATHANASSIOU, C. G. The superworm, Zophobas morio (Coleoptera: Tenebrionidae): a 'sleeping giant' in nutrient sources. Journal of Insect Science, v. 21, n. 2, p. 13, 2021. DOI: 10.1093/jisesa/ieab014. Disponível em: <https://wwwncbinlmnih.ez366.periodicos.capes.gov.br/pmc/articles/PMC8033247/>. Acesso em: 14 set. 2024. DOI: https://doi.org/10.1093/jisesa/ieab014

SÁ, M. V. C.; LEMOS, D.; TACON, A. G. J. Effects of meat and bone meal levels on growth performance, nutrient utilization and digestive enzyme activities of the Pacific white shrimp Litopenaeus vannamei. Aquaculture Nutrition, v. 24, n. 4, p. 1262-1271, 2018.

SOARES, M.; FRACALOSSI, D.M, FREITAS, L.E, REDIG, J.C. SEIFFERT, W.Q., VIEIRA.F. N. Avaliação do desempenho zootécnico do camarão branco do Pacífico alimentado com dietas com diferentes níveis de substituição de farinha de peixe por concentrado proteico de soja. Dissertação (mestrado) - Universidade Federal de Santa Catarina, Centro de Ciências Agrárias, Programa de Pós- Graduação em Aquicultura, Florianópolis,2014.Disponível em:<https://repositorio.ufsc.br/xmlui/handle/123456789/123288 >

SHEKARABI, Swyed P.H.; MEHRGAN, Mehdi S; BANAVREH, Akbar.Viability of the superworm, Zophobas morio, flour as a partial substitute for Fish meal in rainbow trout fingerlings, Oncorhynchus mykiss , Diet: Growth Performance, Amino Acid Profile, Enzyme Activity proteolytics and pigmentation (1-26 páginas), fevereiro de 2021. Disponível em:

SILVA, D. J.; QUEIROZ, A. C. Análise de Alimentos: Métodos Químicos e Biológicos. 3. ed. Viçosa: UFV, 2002. 235 p.

VAN HUIS, A. Edible insects: future prospects for food and feed security. Food and Agriculture Organization of the United Nations (FAO), 2017. DOI: https://doi.org/10.3920/9789086868490_025

VINATEA, L. A. A. Princípios químicos de qualidade da água em aquicultura: uma revisão para peixes e camarões. 2. ed. rev. e ampl. Florianópolis, SC: Ed. da UFS, P. 231, 2004.

WASIELESKY, W., ATWOOD, H., STOKES, A., BROWDY, C.L., 2006. Effect of natural production in a zero exchange suspended microbial floc based super-intensive culture system for white shrimp Litopenaeus vannamei. Aquaculture 258, 396–403.Disponível em: <https://doi.org/10.1016/j.aquaculture.2006.04.030> DOI: https://doi.org/10.1016/j.aquaculture.2006.04.030

XU, W.J., PAN, L.Q., SUN, X.H., HUANG, J., 2013. Effects of bioflocs on water quality, and survival, growth and digestive enzyme activities of Litopenaeus vannamei (Boone) in zero-water exchange culture tanks. Aquac. Res. 44, 1093–1102. Disponível em:<https://doi.org/10.1111/j.1365- 2109.2012.03115.x> DOI: https://doi.org/10.1111/j.1365-2109.2012.03115.x

XU, W., XU, Y., SU, H., HU, X., YANG, K., WEN, G., CAO, Y., 2020. Characteristics of ammonia Removal and Nitrifying Microbial Communities in a Hybrid Biofloc-RAS for Intensive Litopenaeus vannamei Culture: A Pilot-Scale Study. Water 12, 3000. Disponível em:<https://doi.org/10.3390/w12113000> DOI: https://doi.org/10.3390/w12113000

ZHAO, Z.; LIU, Y.; YANG, P.; WANG, J.; CHEN, L. Effects of replacing fishmeal with meat and bone meal on the growth, digestibility, and immune response of white shrimp (Litopenaeus vannamei). Aquaculture Reports, v. 13, p. 100191, 2019.

Downloads

Publicado

2025-12-18

Edição

Seção

Artigos

Como Citar

DA SILVA, Vanuza de Paula do Nascimento; LIMA, Fernanda Reis; COSTA, Léa Carolina de Oliveira; DA COSTA, Saymon Rodrigues Matos; ANDRADE, Jackson Oliveira; COSTA, Danilo Acatauassu da Silva; BRANDÃO, Lian Valente. INCLUSÃO DO TENÉBRIO GIGANTE (ZOPHOBAS MORIO) COMO FONTE PROTEICA ALTERNATIVA EM DIETAS PARA CAMARÃO P.VANNAMEI (BOONE,1931). ARACÊ , [S. l.], v. 7, n. 12, p. e11240 , 2025. DOI: 10.56238/arev7n12-206. Disponível em: https://periodicos.newsciencepubl.com/arace/article/view/11240. Acesso em: 29 dez. 2025.