MOVIMIENTOS UNIDIMENSIONALES EN SUSPENSIÓN DE SEDIMENTOS PELÍTICOS EN FLUJOS DE SUPERFICIE LIBRE
DOI:
https://doi.org/10.56238/arev7n8-053Palabras clave:
Ecuación de Advección-Difusión, Sedimentos Finos, Trazadores FluorescentesResumen
Este artículo adopta una solución analítica Fickiana para la ecuación unidimensional de advección-difusión para el movimiento de sedimentos pelíticos en suspensión en flujos de superficie libre. Se consideran los resultados de experimentos realizados en el laboratorio de hidráulica de la Universidad Estatal de Colorado en Fort Collins. Se diseñó un dispositivo para la inyección instantánea de una solución trazadora fluorescente distribuida uniformemente a lo largo de la sección transversal. Cada experimento consistió en inyectar la misma cantidad de trazador y registrar continuamente el tiempo que tarda la nube fluorescente en atravesar una sección transversal aguas abajo con un fluorímetro Turner Modelo 111. Los resultados se analizaron colectivamente, como si se tratara de una sola inyección, y también experimentalmente. Demostraron que, para predecir con precisión el comportamiento de una suspensión de colorante a lo largo de las secciones transversales de un canal, es necesario considerar las variaciones en los coeficientes de dispersión y la velocidad media de transporte en función del tiempo. Para aplicaciones en flujos naturales, el modelo puede calibrarse y validarse con una sola inyección de trazadores y la determinación de los coeficientes de dispersión y las velocidades medias de los dispersantes en función del tiempo, como se presenta en este estudio.
Descargas
Referencias
ANI, E-C.;WALLIS, S.G.; KRASLAWSKI, A.; AGACHI, P.S. (2009). Development, calibration and evaluation of two mathematical models for pollutant transport in a small river. Environmental Modelling & Software, V.24(10), pg.1139-1152, https://doi.org/10.1016/j.envsoft.2009.03.008. DOI: https://doi.org/10.1016/j.envsoft.2009.03.008
BAEK, K.O. (2018). Flowchart on choosing optimal method of observing transverse dispersion coefficient for solute transport in open channel flow. Sustainability 2018, 10(5), pg.1332; https://doi.org/10.3390/su10051332. DOI: https://doi.org/10.3390/su10051332
BAEK, K.O.; SEO, I.W.; JEONG, S.J. (2006). Evaluation of dispersion coefficients in meandering channels from transient tracer tests. Journal of Hydraulic Engineering, ASCE, V.132(10), pg. 1021–1032, https://doi.org/10.1061/(ASCE)0733-9429(2006)132:10(1021). DOI: https://doi.org/10.1061/(ASCE)0733-9429(2006)132:10(1021)
CARR, M.L; REHMANN, C.R. (2007). Measuring the dispersion coefficient with acoustic Doppler current profilers. Journal of Hydraulic Engineering, ASCE, V.133(8), pg. 977-982. https://doi.org/10.1061/(ASCE)0733-9429(2007)133:8(977). DOI: https://doi.org/10.1061/(ASCE)0733-9429(2007)133:8(977)
CHIN, D.A. (2013). Water-Quality Engineering in Natural Systems: Fate and transport processes in the water environment, 2nd published. John Wiley & Sons, Inc., Hoboken, New Jersey, USA. DOI: https://doi.org/10.1002/9781118459423
CHATWIN, P.C.; ALLEN, C.M. (1985). Mathematical models of dispersion in Rivers and Estuaries, Annual Review of Fluid Mechanics, v.17 (1) 119–149, https://doi.org/10.1146/annurev.fl.17.010185.001003. DOI: https://doi.org/10.1146/annurev.fluid.17.1.119
CHAUDHRY, M.H.; CASS, D.E.; EDINGER, J.E. (1983). Modelling of unsteady–flow water temperatures, Journal of Hydraulic Engineering. V.109(5), pg. 657–669, https://doi.org/10.1061/(ASCE)0733-9429(1983)109:5(657). DOI: https://doi.org/10.1061/(ASCE)0733-9429(1983)109:5(657)
DENG, Z-Q; BENGTSSON, L.; SINGH, V.P.; ADRIAN, D.D. (2002). Longitudinal dispersion coefficient in single-channel streams. Journal of Hydraulic Engineering, ASCE, V.128(10), pg. 901-916, DOI:10.1061/(ASCE)0733-9429(2002)128:10(901). DOI: https://doi.org/10.1061/(ASCE)0733-9429(2002)128:10(901)
FORTIER, A. (1975). Mécanique des fluides et transferts de chaleur et de masse par convection. Masson et Cie, Éditeurs. Paris.
GANE, C.R.; STEPHENSON, P.L. (1979). An explicit numerical method for solving transient combined heat conduction and convection problems. International Journal for Numerical Methods in Engineering. V. 14 (8) pg. 1141–1163, https://doi.org/10.1002/nme.1620140804. DOI: https://doi.org/10.1002/nme.1620140804
GUIMARÃES, M.M. (2006). Estudo do movimento de partículas de sedimentos finos nos escoamentos com superfície livre com transferências verticais. Tese de Doutorado em Ciências em Engenharia Civil/Recursos Hídricos. Instituto Alberto Luiz Coimbra de Pós Graduação e Pesquisa de Engenharia da Universidade Federal do Rio de Janeiro – COPPE/UFRJ. Rio de Janeiro, 436 p.il.
GUIMARÃES, M.M.; WILSON-JR., G. (2004). Modelo unidimensional para o estudo do movimento de partículas de sedimentos em suspensão nos escoamentos com superfície livre. In: 6º Encontro Nacional de Engenharia de Sedimentos, CES/ABRH. Vitória-ES: 08 a 10/dezembro/2004.
GUIMARÃES, M.M.; WILSON-JR., G. (2005). Movimentos unidimensionais duma suspensão de sedimentos pelíticos em escoamentos com superfície livre. In: XVI Simpósio Brasileiro de Recursos, João Pessoa-PB: 20 a 24/novembro/2005, ABRH.
GUIMARÃES, M.M.; WILSON-JR., G. (2007). Estudos unidimensionais do movimento de partículas de sedimentos finos nos escoamentos com superfície livre. In: XVII Simpósio Brasileiro de Recursos Hídricos e VIII Simpósio de Hidráulica e Recursos Hídricos dos Países de Língua Oficial Portugues. São Paulo/SP. ABRH - Associação Brasileira de Recursos Hídricos.
GUIMARÃES, M.M.; WILSON-JR., G. (2008). Estudios bi-dimensionáis del movimiento de las partículas de sedimentos finos en escurrimientos con superficie libre. In: XXIII Congreso Latino Americano de Hidráulica, 2008, Cartagena de Índias. Memorias del XXIII Congreso Latino Americano de Hidráulica. Cartagena de Índias: IAHR - International Association for Hydro-Environment Engineering and Research.
GUIMARÃES, M.M.; WILSON-JR., G. (2014). Movimentos bidimensionais de partículas de sedimentos finos em suspensão nos escoamentos com superfície livre. In: XI Encontro Nacional de Engenharia de Sedimentos. Disponível em: https://anais.abrhidro.org.br/job.php?Job=11755. Acesso em: Jun-2025.
ISENBERG, J.; GUTFINGER, C. (1973). Heat transfer to a draining film, International Journal of Heat & Mass Transfer, v.16 (2), pg. 505–512. https://doi.org/10.1016/0017-9310(73)90075-6. DOI: https://doi.org/10.1016/0017-9310(73)90075-6
ISLAM, M.R.; CHAUDHRY, M.H. (1997). Numerical solution of transport equation for applications in environmental hydraulics and hydrology. Journal of Hydrology. V.191(1-4), pp. 106-121, https://doi.org/10.1016/S0022-1694(96)03077-6. DOI: https://doi.org/10.1016/S0022-1694(96)03077-6
LAPIDUS, L.; AMUNDSON, N.R. (1952). Mathematics of Adsorption in Beds. VI. The Effect of Longitudinal Diffusion in Ion Exchange and Chromatographic Columns, The Journal of Physical Chemistry. V.56(8), pg. 984–988, https://doi.org/10.1021/j150500a014. DOI: https://doi.org/10.1021/j150500a014
LIU, H. (1977). Predicting dispersion coefficient of streams. Journal of the Environmental Engineering Division, ASCE, V.103(1), 59-69, https://doi.org/10.1061/JEEGAV.0000605. DOI: https://doi.org/10.1061/JEEGAV.0000605
MONTEIRO, C.S.G. (2004). Processos aleatórios com injeções instantânea e contínua, aplicadas ao movimento de sedimentos e poluentes em escoamentos com superfície livre. Instituto Alberto Luiz Coimbra de Pós Graduação e Pesquisa de Engenharia da Universidade Federal do Rio de Janeiro – COPPE/UFRJ. Tese de Mestrado em Ciências em Engenharia Civil.
NWIDADAH, B.; ADELOYE, O. M. (2020). Curve fitting the hydrodynamic and dispersion characteristics of pollutant released in an inland water system. Global Journal of Engineering and Technology Advances, V.05(02), pg.038–046. https://doi.org/10.30574/gjeta.2020.5.2.0098. DOI: https://doi.org/10.30574/gjeta.2020.5.2.0098
PARLARGE, J.Y. (1980). Water transport in soils. Annual Review of Fluid Mechanics, v.12 pg. 77–102, https://doi.org/10.1146/annurev.fl.12.010180.000453. DOI: https://doi.org/10.1146/annurev.fl.12.010180.000453
PIOTROWSKI, A.P.; NAPIORKOWSKI, J.J.; ROWINSKI, P.M.; WALLIS, S.G. (2011). Evaluation of temporal concentration profiles for ungauged rivers following pollution incidents. Hydrological Sciences Journal, V.56(5), pg.883-894, https://doi.org/10.1080/02626667.2011.583398. DOI: https://doi.org/10.1080/02626667.2011.583398
RUTHERFORD, J.C. (1999). River mixing. John Wiley & Sons Ltda. England. 347 p.
SALMON, J.R.; LIGGETT, J.A.; GALLAGHER, R.H. (1980). Dispersion analysis in homogeneous lakes, International Journal for Numerical Methods in Engineering. 15 (11) 1627–1642, https://doi.org/10.1002/nme.1620151106. DOI: https://doi.org/10.1002/nme.1620151106
SAYRE, W.W.; CHANG, F.M. (1968). A laboratory investigation of open-channel dispersion processes for dissolved, suspended, and floating dispersants. Transport of Radionuclides by Streams. Geological Survey Professional Paper 433-E. Washington. 71 p. DOI: https://doi.org/10.3133/pp433E
SHIN, J.; SEO, J.Y.; SEO, I.W. (2020). Longitudinal dispersion coefficient- for mixing in open channel flows with submerged vegetation. Ecological Engineering. 2020, V.145. https://doi.org/10.1016/j.ecoleng.2020.105721 DOI: https://doi.org/10.1016/j.ecoleng.2020.105721
SINGH, S.K.; BECK, M.B. (2003). Dispersion coefficient of streams from tracer experiment data. Journal of Environmental Engineering, V.29(6), pg. 539-546. https://doi.org/10.1061/(ASCE)0733-9372(2003)129:6(539) DOI: https://doi.org/10.1061/(ASCE)0733-9372(2003)129:6(539)
WANG, H.; CONG, P.; ZHU, Z.; ZHANG, W.; AI, Y.; HUAI, W. (2022). Analysis of environmental dispersion in wetland flows with floating vegetation islands. Journal of hydrology, V.606. https://doi.org/10.1016/j.jhydrol.2021.127359 DOI: https://doi.org/10.1016/j.jhydrol.2021.127359
WANG, H.Q.; LACROIX, M. (1997). Optimal weighting in the finite difference solution of the convection-dispersion equation. Journal of Hydrology, V. 200(1-4), pg. 228-242, https://doi.org/10.1016/S0022-1694(97)00020-6. DOI: https://doi.org/10.1016/S0022-1694(97)00020-6
WILSON-JR, G. (1987). Etude du transport et de la dispersion des sédiments en tant que processus aléatoires. Thèse de Doctorat d’Etat ès Sciences Physiques. Université Pierre et Marie Curie, Paris VI, 419p., Paris, France.
YOTSUKURA, N. (1963). Turbulent dispersion of miscible materials in open channels. In: U.S. Atomic Energy Comm., Transport of radionuclides in fresh water systems: U.S. Atomic Energy Comm. TID-7664, pp. 311-326.
ZENG, Y-H.; HUAI W.X. (2014). Estimation of longitudinal dispersion coefficient in rivers. Journal of Hydro-environment Research, V.8(1), pg.2-8. https://doi.org/10.1016/j.jher.2013.02.005. DOI: https://doi.org/10.1016/j.jher.2013.02.005
ZOPPOU, C., KNIGHT, J.H. (1997). Analytical solutions for advection and advection-diffusion equations with spatially variable coefficients. Journal of Hydraulic Engineering, ASCE, V. 123(2), pg. 144-148. DOI: 10.1061/(ASCE)0733-9429(1997)123:2(144). DOI: https://doi.org/10.1061/(ASCE)0733-9429(1997)123:2(144)
