ONE-DIMENSIONAL MOVEMENTS IN SUSPENSION OF PELITIC SEDIMENTS IN OPEN CHANNEL FLOW
DOI:
https://doi.org/10.56238/arev7n8-053Keywords:
Advection-Diffusion Equation, Fine Sediments, Fluorescent TracersAbstract
In this paper one Fickian analytical solution of the one-dimensional advection-diffusion equation describing the fine sediment suspended movement in open channel was applied. Experiments carried out in hydraulics laboratory at Colorado State University in Fort Collins are considered. A device was developed to inject instantaneously into the flume, a fluorescent dye solution in such a way that the initial distribution of dispersant approximated an instantaneous plane source with the dispersant uniformly distributed over the entire flow cross section. Each experiment consisted of the same tracer quantity immersion and the continuous record, with a Model 111 Turner Fluorometer, of the transit time of the fluorescent dye cloud through a downstream cross section. The results were analyzed altogether, considering there was only one injection, and also considering each experiment separately. They showed that to estimate precisely the behavior of a dye suspension across the channel transversal sections, it must consider the dispersion coefficients and the transport mean particles velocity variations as time functions. For the natural watercourses’ applications, the model may be adjusted and validated with only one tracer immersion followed by the determination of the dispersion coefficients and mean dispersant particles velocities as time functions, as suggested in this study.
Downloads
References
ANI, E-C.;WALLIS, S.G.; KRASLAWSKI, A.; AGACHI, P.S. (2009). Development, calibration and evaluation of two mathematical models for pollutant transport in a small river. Environmental Modelling & Software, V.24(10), pg.1139-1152, https://doi.org/10.1016/j.envsoft.2009.03.008. DOI: https://doi.org/10.1016/j.envsoft.2009.03.008
BAEK, K.O. (2018). Flowchart on choosing optimal method of observing transverse dispersion coefficient for solute transport in open channel flow. Sustainability 2018, 10(5), pg.1332; https://doi.org/10.3390/su10051332. DOI: https://doi.org/10.3390/su10051332
BAEK, K.O.; SEO, I.W.; JEONG, S.J. (2006). Evaluation of dispersion coefficients in meandering channels from transient tracer tests. Journal of Hydraulic Engineering, ASCE, V.132(10), pg. 1021–1032, https://doi.org/10.1061/(ASCE)0733-9429(2006)132:10(1021). DOI: https://doi.org/10.1061/(ASCE)0733-9429(2006)132:10(1021)
CARR, M.L; REHMANN, C.R. (2007). Measuring the dispersion coefficient with acoustic Doppler current profilers. Journal of Hydraulic Engineering, ASCE, V.133(8), pg. 977-982. https://doi.org/10.1061/(ASCE)0733-9429(2007)133:8(977). DOI: https://doi.org/10.1061/(ASCE)0733-9429(2007)133:8(977)
CHIN, D.A. (2013). Water-Quality Engineering in Natural Systems: Fate and transport processes in the water environment, 2nd published. John Wiley & Sons, Inc., Hoboken, New Jersey, USA. DOI: https://doi.org/10.1002/9781118459423
CHATWIN, P.C.; ALLEN, C.M. (1985). Mathematical models of dispersion in Rivers and Estuaries, Annual Review of Fluid Mechanics, v.17 (1) 119–149, https://doi.org/10.1146/annurev.fl.17.010185.001003. DOI: https://doi.org/10.1146/annurev.fluid.17.1.119
CHAUDHRY, M.H.; CASS, D.E.; EDINGER, J.E. (1983). Modelling of unsteady–flow water temperatures, Journal of Hydraulic Engineering. V.109(5), pg. 657–669, https://doi.org/10.1061/(ASCE)0733-9429(1983)109:5(657). DOI: https://doi.org/10.1061/(ASCE)0733-9429(1983)109:5(657)
DENG, Z-Q; BENGTSSON, L.; SINGH, V.P.; ADRIAN, D.D. (2002). Longitudinal dispersion coefficient in single-channel streams. Journal of Hydraulic Engineering, ASCE, V.128(10), pg. 901-916, DOI:10.1061/(ASCE)0733-9429(2002)128:10(901). DOI: https://doi.org/10.1061/(ASCE)0733-9429(2002)128:10(901)
FORTIER, A. (1975). Mécanique des fluides et transferts de chaleur et de masse par convection. Masson et Cie, Éditeurs. Paris.
GANE, C.R.; STEPHENSON, P.L. (1979). An explicit numerical method for solving transient combined heat conduction and convection problems. International Journal for Numerical Methods in Engineering. V. 14 (8) pg. 1141–1163, https://doi.org/10.1002/nme.1620140804. DOI: https://doi.org/10.1002/nme.1620140804
GUIMARÃES, M.M. (2006). Estudo do movimento de partículas de sedimentos finos nos escoamentos com superfície livre com transferências verticais. Tese de Doutorado em Ciências em Engenharia Civil/Recursos Hídricos. Instituto Alberto Luiz Coimbra de Pós Graduação e Pesquisa de Engenharia da Universidade Federal do Rio de Janeiro – COPPE/UFRJ. Rio de Janeiro, 436 p.il.
GUIMARÃES, M.M.; WILSON-JR., G. (2004). Modelo unidimensional para o estudo do movimento de partículas de sedimentos em suspensão nos escoamentos com superfície livre. In: 6º Encontro Nacional de Engenharia de Sedimentos, CES/ABRH. Vitória-ES: 08 a 10/dezembro/2004.
GUIMARÃES, M.M.; WILSON-JR., G. (2005). Movimentos unidimensionais duma suspensão de sedimentos pelíticos em escoamentos com superfície livre. In: XVI Simpósio Brasileiro de Recursos, João Pessoa-PB: 20 a 24/novembro/2005, ABRH.
GUIMARÃES, M.M.; WILSON-JR., G. (2007). Estudos unidimensionais do movimento de partículas de sedimentos finos nos escoamentos com superfície livre. In: XVII Simpósio Brasileiro de Recursos Hídricos e VIII Simpósio de Hidráulica e Recursos Hídricos dos Países de Língua Oficial Portugues. São Paulo/SP. ABRH - Associação Brasileira de Recursos Hídricos.
GUIMARÃES, M.M.; WILSON-JR., G. (2008). Estudios bi-dimensionáis del movimiento de las partículas de sedimentos finos en escurrimientos con superficie libre. In: XXIII Congreso Latino Americano de Hidráulica, 2008, Cartagena de Índias. Memorias del XXIII Congreso Latino Americano de Hidráulica. Cartagena de Índias: IAHR - International Association for Hydro-Environment Engineering and Research.
GUIMARÃES, M.M.; WILSON-JR., G. (2014). Movimentos bidimensionais de partículas de sedimentos finos em suspensão nos escoamentos com superfície livre. In: XI Encontro Nacional de Engenharia de Sedimentos. Disponível em: https://anais.abrhidro.org.br/job.php?Job=11755. Acesso em: Jun-2025.
ISENBERG, J.; GUTFINGER, C. (1973). Heat transfer to a draining film, International Journal of Heat & Mass Transfer, v.16 (2), pg. 505–512. https://doi.org/10.1016/0017-9310(73)90075-6. DOI: https://doi.org/10.1016/0017-9310(73)90075-6
ISLAM, M.R.; CHAUDHRY, M.H. (1997). Numerical solution of transport equation for applications in environmental hydraulics and hydrology. Journal of Hydrology. V.191(1-4), pp. 106-121, https://doi.org/10.1016/S0022-1694(96)03077-6. DOI: https://doi.org/10.1016/S0022-1694(96)03077-6
LAPIDUS, L.; AMUNDSON, N.R. (1952). Mathematics of Adsorption in Beds. VI. The Effect of Longitudinal Diffusion in Ion Exchange and Chromatographic Columns, The Journal of Physical Chemistry. V.56(8), pg. 984–988, https://doi.org/10.1021/j150500a014. DOI: https://doi.org/10.1021/j150500a014
LIU, H. (1977). Predicting dispersion coefficient of streams. Journal of the Environmental Engineering Division, ASCE, V.103(1), 59-69, https://doi.org/10.1061/JEEGAV.0000605. DOI: https://doi.org/10.1061/JEEGAV.0000605
MONTEIRO, C.S.G. (2004). Processos aleatórios com injeções instantânea e contínua, aplicadas ao movimento de sedimentos e poluentes em escoamentos com superfície livre. Instituto Alberto Luiz Coimbra de Pós Graduação e Pesquisa de Engenharia da Universidade Federal do Rio de Janeiro – COPPE/UFRJ. Tese de Mestrado em Ciências em Engenharia Civil.
NWIDADAH, B.; ADELOYE, O. M. (2020). Curve fitting the hydrodynamic and dispersion characteristics of pollutant released in an inland water system. Global Journal of Engineering and Technology Advances, V.05(02), pg.038–046. https://doi.org/10.30574/gjeta.2020.5.2.0098. DOI: https://doi.org/10.30574/gjeta.2020.5.2.0098
PARLARGE, J.Y. (1980). Water transport in soils. Annual Review of Fluid Mechanics, v.12 pg. 77–102, https://doi.org/10.1146/annurev.fl.12.010180.000453. DOI: https://doi.org/10.1146/annurev.fl.12.010180.000453
PIOTROWSKI, A.P.; NAPIORKOWSKI, J.J.; ROWINSKI, P.M.; WALLIS, S.G. (2011). Evaluation of temporal concentration profiles for ungauged rivers following pollution incidents. Hydrological Sciences Journal, V.56(5), pg.883-894, https://doi.org/10.1080/02626667.2011.583398. DOI: https://doi.org/10.1080/02626667.2011.583398
RUTHERFORD, J.C. (1999). River mixing. John Wiley & Sons Ltda. England. 347 p.
SALMON, J.R.; LIGGETT, J.A.; GALLAGHER, R.H. (1980). Dispersion analysis in homogeneous lakes, International Journal for Numerical Methods in Engineering. 15 (11) 1627–1642, https://doi.org/10.1002/nme.1620151106. DOI: https://doi.org/10.1002/nme.1620151106
SAYRE, W.W.; CHANG, F.M. (1968). A laboratory investigation of open-channel dispersion processes for dissolved, suspended, and floating dispersants. Transport of Radionuclides by Streams. Geological Survey Professional Paper 433-E. Washington. 71 p. DOI: https://doi.org/10.3133/pp433E
SHIN, J.; SEO, J.Y.; SEO, I.W. (2020). Longitudinal dispersion coefficient- for mixing in open channel flows with submerged vegetation. Ecological Engineering. 2020, V.145. https://doi.org/10.1016/j.ecoleng.2020.105721 DOI: https://doi.org/10.1016/j.ecoleng.2020.105721
SINGH, S.K.; BECK, M.B. (2003). Dispersion coefficient of streams from tracer experiment data. Journal of Environmental Engineering, V.29(6), pg. 539-546. https://doi.org/10.1061/(ASCE)0733-9372(2003)129:6(539) DOI: https://doi.org/10.1061/(ASCE)0733-9372(2003)129:6(539)
WANG, H.; CONG, P.; ZHU, Z.; ZHANG, W.; AI, Y.; HUAI, W. (2022). Analysis of environmental dispersion in wetland flows with floating vegetation islands. Journal of hydrology, V.606. https://doi.org/10.1016/j.jhydrol.2021.127359 DOI: https://doi.org/10.1016/j.jhydrol.2021.127359
WANG, H.Q.; LACROIX, M. (1997). Optimal weighting in the finite difference solution of the convection-dispersion equation. Journal of Hydrology, V. 200(1-4), pg. 228-242, https://doi.org/10.1016/S0022-1694(97)00020-6. DOI: https://doi.org/10.1016/S0022-1694(97)00020-6
WILSON-JR, G. (1987). Etude du transport et de la dispersion des sédiments en tant que processus aléatoires. Thèse de Doctorat d’Etat ès Sciences Physiques. Université Pierre et Marie Curie, Paris VI, 419p., Paris, France.
YOTSUKURA, N. (1963). Turbulent dispersion of miscible materials in open channels. In: U.S. Atomic Energy Comm., Transport of radionuclides in fresh water systems: U.S. Atomic Energy Comm. TID-7664, pp. 311-326.
ZENG, Y-H.; HUAI W.X. (2014). Estimation of longitudinal dispersion coefficient in rivers. Journal of Hydro-environment Research, V.8(1), pg.2-8. https://doi.org/10.1016/j.jher.2013.02.005. DOI: https://doi.org/10.1016/j.jher.2013.02.005
ZOPPOU, C., KNIGHT, J.H. (1997). Analytical solutions for advection and advection-diffusion equations with spatially variable coefficients. Journal of Hydraulic Engineering, ASCE, V. 123(2), pg. 144-148. DOI: 10.1061/(ASCE)0733-9429(1997)123:2(144). DOI: https://doi.org/10.1061/(ASCE)0733-9429(1997)123:2(144)
