FEEDBACKINSIGHT-AI: A SYSTEM FOR TRIAGE, CLASSIFICATION, AND SUMMARIZATION OF CUSTOMER FEEDBACK USING ARTIFICIAL INTELLIGENCE

Authors

  • Filipe Magalhães Author
  • Matheus Marques Author
  • Ricardo Marciano dos Santos Author
  • Alfredo Nazareno Pereira Boente Author
  • Vinícius Marques da Silva Ferreira Author
  • Miguel Gabriel P de Carvalho Author
  • Thiago Silva da Conceiçao Author
  • Rosangela de Sena Almeida Author

DOI:

https://doi.org/10.56238/arev7n11-361

Keywords:

Artificial Intelligence, Automation, Customer Feedback, Natural Language Processing, Sentiment Analysis

Abstract

This article proposes FeedbackInsight-AI, an automated system for triaging, classifying, and summarizing customer feedback using Artificial Intelligence (AI) and Natural Language Processing (NLP) techniques. The objective is to optimize the handling of large volumes of messages received by companies, reducing response time and enabling more efficient information analysis. The study is based on a qualitative and descriptive approach, using machine learning models applied to sentiment analysis and text categorization. The methodology involves integration between communication (Gmail), management (Trello), and data analysis (Google Sheets) APIs, utilizing state-of-the-art language models (like GPT-4). The proposal aims to contribute to the advancement of intelligent automation in customer service processes and data-driven decision-making in organizations.

Downloads

Download data is not yet available.

References

ATLASSIAN. Trello Developers. Disponível em: https://developer.atlassian.com/cloud/trello/. Acesso em: 25 out. 2025.

BOENTE, Alfredo Nazareno Pereira. [S. l.], v. 7, n. 10, p. e8856, 2025. DOI: 10.56238/arev7n10-149. Disponível em: https://periodicos.newsciencepubl.com/arace/article/view/8856. Acesso em: 21 out. 2025.

DOMINGOS, Pedro. The Master Algorithm: How the Quest for the Ultimate Learning Machine Will Remake Our World. New York: Basic Books, 2015.

DOS SANTOS, Ricardo Marciano. Proposição de um modelo de interação humano-computador baseado em lógica fuzzy para aferição de dados biofísicos. Rio de Janeiro, 2020.

FERREIRA, Vinícius Marques da Silva. [S. l.], v. 7, n. 10, p. e8856, 2025. DOI: 10.56238/arev7n10-149. Disponível em: https://periodicos.newsciencepubl.com/arace/article/view/8856. Acesso em: 21 out. 2025.

GOODFELLOW, Ian; BENGIO, Yoshua; COURVILLE, Aaron. Deep Learning. Cambridge: MIT Press, 2016.

GOOGLE. Gmail API Documentation. Disponível em: https://developers.google.com/gmail/api. Acesso em: 25 out. 2025.

GOOGLE. Google Sheets API Documentation. Disponível em: https://developers.google.com/sheets/api. Acesso em: 25 out. 2025.

HAENLEIN, Michael et al. Artificial Intelligence and the Future of Marketing: A Review and Research Agenda. Journal of Business Research, v. 116, p. 263–271, 2019.

LECUN, Yann; BENGIO, Yoshua; HINTON, Geoffrey. Deep Learning. Nature, v. 521, p. 436–444, 2015.

MARR, Bernard. Artificial Intelligence in Practice. New York: Wiley, 2020.

NIELSEN, Jakob. Human–AI Interaction Guidelines. Nielsen Norman Group, 2020.

OPENAI. API Reference. Disponível em: https://platform.openai.com/docs/. Acesso em: 25 out. 2025.

RUSSELL, Stuart; NORVIG, Peter. Artificial Intelligence: A Modern Approach. 4. ed. London: Pearson, 2022.

Published

2025-11-27

Issue

Section

Articles

How to Cite

MAGALHÃES, Filipe; MARQUES, Matheus; DOS SANTOS, Ricardo Marciano; BOENTE, Alfredo Nazareno Pereira; FERREIRA, Vinícius Marques da Silva; DE CARVALHO, Miguel Gabriel P; DA CONCEIÇAO, Thiago Silva; ALMEIDA, Rosangela de Sena. FEEDBACKINSIGHT-AI: A SYSTEM FOR TRIAGE, CLASSIFICATION, AND SUMMARIZATION OF CUSTOMER FEEDBACK USING ARTIFICIAL INTELLIGENCE. ARACÊ , [S. l.], v. 7, n. 11, p. e10492, 2025. DOI: 10.56238/arev7n11-361. Disponível em: https://periodicos.newsciencepubl.com/arace/article/view/10492. Acesso em: 5 dec. 2025.