BIORREMEDIAÇÃO E FITORREMEDIAÇÃO DO HERBICIDA 2,4-D E GLYPHOSATE – REVISÃO DE LITERATURA

Autores/as

  • Francislene Couto da Costa Autor/a
  • Maria Jaqueline de Lima Gonçalves Autor/a
  • Krislly Emanuelly Moura Pimenta Autor/a
  • Miriam Hiroko Inoue Autor/a

DOI:

https://doi.org/10.56238/arev7n11-184

Palabras clave:

Pesticidas, Degradação Biológica, Microrganismos, Plantas

Resumen

O aumento da produção agrícola intensificou a aplicação de herbicidas como o 2,4-D e glyphosate que são utilizados para o controle de plantas daninhas. Esses compostos químicos por mais que sejam eficazes afetam organismos não-alvo e podem causar a contaminação de solos e águas, além de desequilíbrios ecológicos. Assim, para mitigar esses impactos, técnicas sustentáveis como a biorremediação e a fitorremediação têm sido desenvolvidas, utilizando microrganismos e plantas capazes de degradar os herbicidas. Dessa forma, o presente trabalho teve como objetivo realizar uma revisão de literatura das publicações que abordam sobre a biorremediação e fitorremediação dos herbicidas 2,4-D e glyphosate, por meio de microrganismos e plantas. A busca bibliográfica foi realizada em quatro bases de dados e foram selecionados trabalhos publicados entre os anos de 2019 a 2025 tanto em português como inglês. Foi possível evidenciar que a biorremediação e fitorremediação se mostram técnicas promissoras para a degradação de diferentes herbicidas. A biorremediação realizada por microrganismos apresenta resultados expressivos em condições laboratoriais, porém ainda são necessários estudos de campo que confirmem sua eficiência em diferentes tipos de solo e níveis de contaminação. Já a fitorremediação depende da identificação de fatores que aumente a capacidade das plantas com a escolha de espécies adequadas e manejo de condições ambientais. Logo, ambas estratégias podem promover a recuperação de ambientes degradados e a mitigação dos impactos ambientais causados pelo uso excessivo de herbicidas.

Descargas

Los datos de descarga aún no están disponibles.

Referencias

AKHTAR, N.; AMIN-UL MANNAN, M. Mycoremediation: Expunging environmental pollutants. Biotechnology Reports, v. 26, p. 1-10, 2020. Disponível em: https://www.sciencedirect.com/science/article/pii/S2215017X19307003. DOI: https://doi.org/10.1016/j.btre.2020.e00452

AYILARA, M. S.; BABALOLA, O. O. Bioremediation of environmental wastes: the role of microorganisms. Frontiers in Agronomy, v. 5, p. 1-15, 2023. Disponível em: https://www.frontiersin.org/journals/agronomy/articles/10.3389/fagro.2023.1183691/full. DOI: https://doi.org/10.3389/fagro.2023.1183691

BARROSO, A. A. M.; MURATA, A. T. Matologia: estudos sobre plantas daninhas. 1 ed. Jaboticabal: Fábrica da Palavra, 2021. Disponível em: https://www.matologia.com/_files/ugd/1a54d2_3829fc6f7e9145f8bbdc7a2eecafd4d3.pdf#page=253.

BHATT, P. et al. Bioremediation potential of laccase for catalysis of glyphosate, isoproturon, lignin, and parathion: Molecular docking, dynamics, and simulation. Journal of Hazardous Materials, v. 443, 2023. Disponível em: https://www.sciencedirect.com/science/article/abs/pii/S0304389422021136. DOI: https://doi.org/10.1016/j.jhazmat.2022.130319

BOMFETI, C. A. et al. Biorremediação de áreas contaminadas com emprego de fungos do gênero Pleurotus. nº 1 (Série E-books SolloAgro). Universidade de São Paulo. Escola Superior de Agricultura Luiz de Queiroz, 2025. Disponível em: https://doi.org/10.11606/9786587391809. DOI: https://doi.org/10.11606/9786587391809

CARLES, L. et al. Potential of preventive bioremediation to reduce environmental contamination by pesticides in an agricultural context: a case study with the herbicide 2, 4-D. Journal of Hazardous Materials, v. 416, p. 125740, 2021. Disponível em: https://doi.org/10.1016/j.jhazmat.2021.125740. DOI: https://doi.org/10.1016/j.jhazmat.2021.125740

CHEN, S. F. et al. Microorganism-driven 2,4-D biodegradation current status and emerging opportunities. Molecules, v. 29, n. 16, p. 3869, 2024. Disponível em: 10.3390/molecules29163869. DOI: https://doi.org/10.3390/molecules29163869

CRUZ, P. C. Aplicação de Candida intermedia na remoção de glifosato em soluções aquosas. 65 f. Dissertação (Mestrado em Ciência e Tecnologia Ambiental) – Universidade Tecnológica Federal do Paraná, Programa de Pós-Graduação em Ciência e Tecnologia Ambiental, Curitiba, 2024. Disponível em: https://riut.utfpr.edu.br/jspui/handle/1/37213.

DHAGAT, S.; JUJJAVARAPU, S. E. Utility of lignin-modifying enzymes: a green technology for organic compound mycodegradation. Journal of Chemical Technology and Biotechnology, v. 97, p. 343-358, 2022. Disponível em: https://scijournals.onlinelibrary.wiley.com/doi/abs/10.1002/jctb.6807. DOI: https://doi.org/10.1002/jctb.6807

DINAKARKUMAR, Y. et al. Fungal bioremediation: an overview of the mechanisms, applications and future perspectives. Environmental Chemistry and Ecotoxicology, v. 6, p. 293-302, 2024. Disponível em: https://www.sciencedirect.com/science/article/pii/S2590182624000237. DOI: https://doi.org/10.1016/j.enceco.2024.07.002

DÍAZ-SOTO, J. A. et al. Glyphosate resistance and biodegradation by Burkholderia cenocepacia CEIB S5-2. Environmental Science and Pollution Research International, v. 31, n. 25, p. 37480–37495, 2024. Disponível: https://link.springer.com/article/10.1007/s11356-024-33772-2. DOI: https://doi.org/10.1007/s11356-024-33772-2

DEL BUONO, D. et al. Phytoremediation and detoxification of xenobiotics in plants: herbicide-safeners as a tool to improve plant efficiency in the remediation of polluted environments. A mini-review. International journal of phytoremediation, v. 22, n. 8, p. 1-14, 2020. Disponível em: https://www.tandfonline.com/doi/abs/10.1080/15226514.2019.1710817. DOI: https://doi.org/10.1080/15226514.2019.1710817

DONG, C. et al. Laccase: a potential biocatalyst for pollutant degradation. Environmental Pollution, v. 319, 2023. Disponível em: https://www.sciencedirect.com/science/article/abs/pii/S0269749123000015. DOI: https://doi.org/10.1016/j.envpol.2023.120999

DUKE, S. O. Glyphosate: environmental fate and impact. Weed Science, v. 68, n. 3, p. 201-207, 2020. Disponível em: https://www.cambridge.org/core/journals/weed-science/article/abs/glyphosate-environmental-fate-and-impact/85C5628F98E45060AE0B7046F11361E2. DOI: https://doi.org/10.1017/wsc.2019.28

ECHEZONACHI, S. O. The role of white rot fungi in bioremediation. In: Microbes and Microbial Biotechnology for Green Remediation. Elsevier, 2022. p. 305-320. Disponível em: https://www.sciencedirect.com/science/article/abs/pii/B9780323904520000347. DOI: https://doi.org/10.1016/B978-0-323-90452-0.00034-7

ELIAS, R. V.; INOUE, M. H.; SOUZA, H. M. L. Macrofungi with potential for bioremediation of the herbicide atrazine. Anais da Academia Brasileira de Ciências, v. 97, n. 4, p. 1-12, 2024. Disponível em: https://www.scielo.br/j/aabc/a/LLRjb93bHbpst5kvGvgzmSS/?lang=en. DOI: https://doi.org/10.1590/0001-3765202520241100

ERMAKOVA, I. T. et al. Bioremediation of glyphosate-contaminated soils. Applied Microbiology and Biotechnology, v. 88, p. 585-594, 2010. Disponível em: https://link.springer.com/article/10.1007/s00253-010-2775-0. DOI: https://doi.org/10.1007/s00253-010-2775-0

FENG, D.; SORIC, A.; BOUTIN, O. Treatment technologies and degradation pathways of glyphosate: A critical review. Science of The Total Environment, v. 742, p. 140559, 2020. Disponível em: https://www.sciencedirect.com/science/article/abs/pii/S004896972034081X. DOI: https://doi.org/10.1016/j.scitotenv.2020.140559

GRGAS, D. et al. The bacterial degradation of lignin - a review. Water, v. 15, n. 7, p. 1-17, 2023. Disponível em: https://www.mdpi.com/2073-4441/15/7/1272?utm_campaign=releaseissue_waterutm_medium=emailutm_source=releaseissueutm_term=titlelink92. DOI: https://doi.org/10.3390/w15071272

KHATOON, Z.; OROZCO-MOSQUEDA, M. D. C.; SANTOYO, G. Microbial contributions to heavy metal phytoremediation in agricultural soils: A review. Microorganisms, v. 12, n. 10, p. 1-20, 2024. Disponível em: https://www.mdpi.com/2076-2607/12/10/1945. DOI: https://doi.org/10.3390/microorganisms12101945

KHLAIF, B. M.; AL HASSANY, J. S. Bioremediation to improve the efficiency of recovering soil removed from agricultural use areas. Nativa, v. 12, n. 3, p. 559-566, 2024. Disponível em: https://openurl.ebsco.com/openurl?sid=ebsco:plink:scholar&id=ebsco:gcd:181715440&crl=c. DOI: https://doi.org/10.31413/nat.v12i3.17726

KORKMAZ, V. et al. The bioremediation of glyphosate in soil media by some newly isolated bacteria: The COD, TOC removal efficiency and mortality assessment for Daphnia magna. Ecotoxicology and Environmental Safety, v. 221, p. 101535, 2021. Disponível em: https://doi.org/10.1016/j.eti.2021.101535. DOI: https://doi.org/10.1016/j.eti.2021.101535

KUMAR, A.; CHANDRA, R. Ligninolytic enzymes and its mechanisms for degradation of lignocellulosic waste in environment. Heliyon, v. 6, n. 2, p. 1-18, 2020. Disponível em: https://www.cell.com/heliyon/fulltext/S2405-8440(20)30015-3. DOI: https://doi.org/10.1016/j.heliyon.2020.e03170

KUMAR, A. et al. Chlorpyrifos degradation using binary fungal strains isolated from industrial waste soil. Biologia, v. 76 n. 10, p. 3071–3080, 2021. Disponível em: https://link.springer.com/article/10.1007/s11756-021-00816-8. DOI: https://doi.org/10.1007/s11756-021-00816-8

LIMA, K. F. S. et al. Fitorremediação de solo contaminado por herbicida utilizando espécies florestais nativas. Cuadernos de Educación y Desarrollo, v. 16, n. 3, p. 1-16, 2024. Disponível em: https://ojs.cuadernoseducacion.com/ojs/index.php/ced/article/view/3711. DOI: https://doi.org/10.55905/cuadv16n3-088

LONKAR, K., BODADE, R. Potential role of endophytes in weeds and herbicide tolerance in plants. In: MOHAMED, H. I., EL-BELTAGI, H. E. S.; ABD-ELSALAM, K. A. Plant Growth-Promoting Microbes for Sustainable Biotic and Abiotic Stress Management. Springer, p. 227-250, 2021. Disponível em: https://link.springer.com/chapter/10.1007/978-3-030-66587-6_9. DOI: https://doi.org/10.1007/978-3-030-66587-6_9

LÓPEZ-CHÁVEZ, M. Y et al. Phytoremediation: Mechanisms, plant selection and enhancement by natural and synthetic agents. Environmental Advances, v. 8, p. 1-10, 2021. Disposnível em: https://www.sciencedirect.com/science/article/pii/S2666765722000394.

MAGNOLI, K. et al. Biodegradação fúngica de herbicidas clorados: uma visão geral com ênfase em 2,4-D na Argentina. Biodegradation, v. 34, p. 199-214, 2023. Disponível em: https://doi.org/10.1007/s10532-023-10022-9. DOI: https://doi.org/10.1007/s10532-023-10022-9

MAGNOLI, K. et al. Aspergillus oryzae Pellets as a Biotechnological Tool to Remove 2,4-D. Agriculture, v. 15, n. 1795, 2025. Disponível em: https://doi.org/10.3390/agriculture15171795. DOI: https://doi.org/10.3390/agriculture15171795

MAHALLE, S. et al. Emerging microbial remediation methods for rejuvenation of pesticide-contaminated sites. Trends in Environmental Microbiology, v. 1 p. 100026, 2025. Disponível em: https://doi.org/10.1016/j.temicr.2025.100026. DOI: https://doi.org/10.1016/j.temicr.2025.100026

MENDES, K. F.; INOUE, M. H.; TOMISIELO, V. L. Herbicidas no ambiente: comportamento e destino. 1 ed. Editora UFV, 2022.

MINOZZI, G. B. Eficácia, absorção e translocação de glifosato e 2,4-D em Spermacoce verticillata (L.). 80 f. Tese (Doutorado em Ciências) – Escola Superior de Agricultura “Luiz de Queiroz”, Universidade de São Paulo, Piracicaba, 2022. Disponível em: https://www.teses.usp.br/teses/disponiveis/11/11136/tde-16052022-105231/en.php.

MOHY-UD-DIN, W. et al. Isolated bacterial strains efficiently degrade glyphosate under different environmental conditions. Pakistan Journal of Botany, v. 56, n. 2, p. 765-774, 2024. Disponível em: http://dx.doi.org/10.30848/PJB2024-2(28). DOI: https://doi.org/10.30848/PJB2024-2(28)

MOHY-U-DIN, W. et al. Unlocking the potential of glyphosate-resistant bacterial strains in biodegradation and maize growth. Frontiers in Microbiology, v. 14, p. 1285566, 2023. Disponível em: 10.3389/fmicb.2023.1285566. DOI: https://doi.org/10.3389/fmicb.2023.1285566

MONTREEMUK, J.; STEWART, T. N.; PRAPAGDEE, B. Bacterial-assisted phytoremediation of heavy metals: Concepts, current knowledge, and future directions. Environmental Technology & Innovation, v. 33, p. 1-15, 2024. Disponível em: https://www.sciencedirect.com/science/article/pii/S2352186423004844. DOI: https://doi.org/10.1016/j.eti.2023.103488

MUHAMMAD, J. B. et al. Achromobacter xylosoxidans bacteria isolated from contaminated agricultural environment for a sustainable 2,4-dichlorophenoxyacetic acid herbicide degradation: An experimental study. Case Studies in Chemical and Environmental Engineering, v. 9, p. 100604, 2024. Disponível em: https://doi.org/10.1016/j.cscee.2023.100604. DOI: https://doi.org/10.1016/j.cscee.2023.100604

MUHAMMAD, J. B. et al. Biodegradation potential of 2,4 dichlorophenoxyacetic acid by Cupriavidus campinensis isolated from rice farm cultivated soil. Case Studies in Chemical and Environmental Engineering, v. 8, p. 100434, 2023. Disponível em: https://doi.org/10.1016/j.cscee.2023.100434. DOI: https://doi.org/10.1016/j.cscee.2023.100434

NASCIMENTO, A. C. B. et al. Exploring fungal biodegradation pathways of 2,4-D: enzymatic mechanisms, synergistic actions, and environmental applications. ACS Omega, v. 10, n. 35, p. 39398-39414, 2025. Disponível em: https://pubs.acs.org/doi/full/10.1021/acsomega.5c05161. DOI: https://doi.org/10.1021/acsomega.5c05161

NEDJIMI, B. Fitorremediação: uma tecnologia ambiental sustentável para descontaminação de metais pesados. SN Applied Sciences, v. 3, n. 286, p. 1-19, 2021. Disponível em: https://link.springer.com/article/10.1007/s42452-021-04301-4.

NGUYEN, T. L. A. et al. Degradation of 2,4-dichlorophenoxyacetic acid (2,4-D) and 2,4,5-trichlorophenoxyacetic acid (2,4,5-T) by fungi originating from Vietnam. Biodegradation, v. 33, n. 3, p. 301-316, 2022. Disponível em: https://link.springer.com/article/10.1007/s10532-022-09982-1. DOI: https://doi.org/10.1007/s10532-022-09982-1

NOGUERA, O. M. N. et al. Tolerância de microrganismos eucariotos ao herbicida glifosato. Semina: Ciências Biológicas e da Saúde, v. 42, n. 1, p. 103-112, 2021. Disponível em: https://ojs.uel.br/revistas/uel/index.php/seminabio/article/view/41979/28925. DOI: https://doi.org/10.5433/1679-0367.2021v42n1p103

OLIVEIRA, C. G. et al. Production of indole-3-acetic acid and degradation of 2,4-d by yeasts isolated from pollinating insects. Microorganisms, v. 13, n. 7, p. 1-13, 2025. Disponível em: https://www.mdpi.com/2076-2607/13/7/1492. DOI: https://doi.org/10.3390/microorganisms13071492

ORJI, M. U. et al. Bioremediation of glyphosate polluted soil using fungal species. International Journal of Trend in Scientific Research and Development, v. 6, n. 7, p. 726-732, 2022. Disponível em: http://eprints.umsida.ac.id/10830/.

PAPADE, Sandesh E. et al. Degradation of 2, 4-D by plant growth-promoting Cupriavidus sp. DSPFs: role in mitigating herbicide toxicity in soil and enhancing crop production. Microbiology Spectrum, p. e00560-25, 2025. Disponível em: https://doi.org/10.1128/spectrum.00560-25. DOI: https://doi.org/10.1128/spectrum.00560-25

PATEL, A. K. et al. Organic wastes bioremediation and its changing prospects. Science of the Total Environment, v. 824, p. 153889, 2022. Disponível em: https://doi.org/10.1016/j.scitotenv.2022.153889. DOI: https://doi.org/10.1016/j.scitotenv.2022.153889

PATRIARCHEAS, D.; MOMTAREEN, T.; GALLAGHER, J. E. G. Yeast of Eden: microbial resistance to glyphosate from a yeast perspective. Springer, v. 69, n. 4, p. 203-212, 2023. Disponível em: https://link.springer.com/article/10.1007/s00294-023-01272-4. DOI: https://doi.org/10.1007/s00294-023-01272-4

PERERA, I. C.; HEMAMALI, E. H. Genetically modified organisms for bioremediation: current research and advancements. Bioremediation of environmental pollutants: emerging trends and strategies, p. 163-186, 2021. Disponível em: https://doi.org/10.1007/978-3-030-86169-8_7. DOI: https://doi.org/10.1007/978-3-030-86169-8_7

RAFFA, C. M.; CHIAMPO, F. Bioremediation of agricultural soils polluted with pesticides: a review. Bioengineering, v. 8, n. 7, p. 1-29, 2021. Disponível em: https://www.mdpi.com/2306-5354/8/7/92. DOI: https://doi.org/10.3390/bioengineering8070092

RAMÍREZ, J. R. G. et al. Microbiology and biochemistry of pesticides biodegradation. International journal of molecular sciences, v. 24, n. 21, p. 1-47, 2023. Disponível em: https://www.mdpi.com/1422-0067/24/21/15969. DOI: https://doi.org/10.3390/ijms242115969

RATHORE, S. et al. An innovative approach of bioremediation in enzymatic degradation of xenobiotics. Biotechnology & genetic engineering reviews, v. 38, n. 1, p. 1-32, 2022. Disponível em: https://www.tandfonline.com/doi/abs/10.1080/02648725.2022.2027628. DOI: https://doi.org/10.1080/02648725.2022.2027628

ROMANTSCHUK, M. et al. Bioremediation of contaminated soil and groundwater by in situ biostimulation. Frontiers in microbiology, v. 14, p. 1258148, 2023. Disponível em: https://www.frontiersin.org/journals/microbiology/articles/10.3389/fmicb.2023.1258148/full. DOI: https://doi.org/10.3389/fmicb.2023.1258148

SERBENT, M. P. et al. Growth, laccase activity and role in 2,4-D degradation of Lentinus crinitus (L.) Fr. in a liquid medium. Biocatalysis and Agricultural Biotechnology, v. 50, n. 7, p. 1-20, 2023. Disponível em: https://www.sciencedirect.com/science/article/abs/pii/S187881812300083X. DOI: https://doi.org/10.1016/j.bcab.2023.102682

SILVA, L. F. N. Biorremediação de poluentes orgânicos em meio aquoso utilizando fungos filamentosos. Dissertação (Mestrado em Química) – Universidade Estadual do Sudoeste da Bahia, Itapetinga, 2024. Disponível em: https://www2.uesb.br/ppg/ppgquimica/wp-content/uploads/2025/08/Luiz-Filipe-Nonato-Silva.

SILVA, J. P. P. et al. Fitorremediation of contaminated soil with 2, 4-D+ picloram in Eastern Amazonia. Research, Society and Development, v. 10, n. 4, 2024. Disponível em: https://www.scopus.com/pages/publications/85207072777?origin=resultslist. DOI: https://doi.org/10.33448/rsd-v10i4.14372

SILVA, J. V.; MOREIRA, J. S. C. Análise enzimática de isolados de basidiomicetos e potencial de biorremediação do herbicida 2,4-D (ácido 2,4-Diclorofenoxiacético). Revista Brasileira de Meio Ambiente, v. 12, n. 2, p. 88-101, 2024. Disponível em: https://revistabrasileirademeioambiente.com/index.php/RVBMA/article/view/1565.

SHARMA, B.; DANGI, A. K.; SHUKLA, P. Contemporary enzyme based technologies for bioremediation: a review. Journal of environmental management, v. 210, p. 10–22, 2018. Disponível em: https://www.sciencedirect.com/science/article/abs/pii/S030147971731263X. DOI: https://doi.org/10.1016/j.jenvman.2017.12.075

SINGH, N. et al. Microbially derived surfactants: an ecofriendly, innovative, and effective approach for managing environmental contaminants. Frontiers in Bioengineering and Biotechnology, v. 12, p. 1398210, 2024. Disponível em: https://www.frontiersin.org/journals/bioengineering-and-biotechnology/articles/10.3389/fbioe.2024.1398210/full. DOI: https://doi.org/10.3389/fbioe.2024.1398210

SOUZA, R. M. et al. Occurrence, impacts and general aspects of pesticides in surface water: a review. Process Safety and Environmental Protection, v. 135, p. 22-37, 2020. Disponível em: https://www.sciencedirect.com/science/article/abs/pii/S0957582019318683. DOI: https://doi.org/10.1016/j.psep.2019.12.035

SOUZA, F. S. et al. Isolamento e seleção de fungos tolerantes ao herbicida Glyphosate. Research, Society and Development, v. 11, n. 1, p. 1-16, 2022. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/24782. DOI: https://doi.org/10.33448/rsd-v11i1.24782

SPINELLI, V. et al. Glyphosate-eating fungi: study on fungal saprotrophic strains’ ability to tolerate and utilise glyphosate as a nutritional source and on the ability of Purpureocillium lilacinum to degrade it. Microorganisms, v. 9, n. 11, p. 1-21, 2021. Disponível em: https://www.mdpi.com/2076-2607/9/11/2179. DOI: https://doi.org/10.3390/microorganisms9112179

STOYANOVA, K. et al. Biodegradation and Utilization of the Pesticides Glyphosate and Carbofuran by Two Yeast Strains. Processes, v. 11, n. 3343, 2023. https://doi.org/10.3390/pr11123343. DOI: https://doi.org/10.3390/pr11123343

SWATHY, K. et al. Biodegradation of pesticide in agricultural soil employing entomopathogenic fungi: Current state of the art and future perspectives. Heliyon, v. 10, n. 1, p. 1-17, 2024. Disponível em: https://www.cell.com/heliyon/fulltext/S2405-8440(23)10614-1. DOI: https://doi.org/10.1016/j.heliyon.2023.e23406

TARLA, D. N. et al. Phytoremediation and bioremediation of pesticide-contaminated soil. Applied Sciences, v. 10, n. 4, p. 1-25, 2020. Disponível em: https://www.mdpi.com/2076-3417/10/4/1217. DOI: https://doi.org/10.3390/app10041217

THIRUMALAIVASAN, N. et al. Utilization of fungal and bacterial bioremediation techniques for the treatment of toxic waste and biowaste. Frontiers in Materials, v. 11, p. 1416445, 2024. Disponível em: https://www.frontiersin.org/journals/materials/articles/10.3389/fmats.2024.1416445/full. DOI: https://doi.org/10.3389/fmats.2024.1416445

TORRA, J. et al. Metabolism of 2, 4‐D in plants: comparative analysis of metabolic detoxification pathways in tolerant crops and resistant weeds. Pest Management Science, v. 80, n. 12, p. 6041-6052, 2024. Disponível em: https://pubmed.ncbi.nlm.nih.gov/39132883/. DOI: https://doi.org/10.1002/ps.8373

VAKSMAA, A. et al. Role of fungi in bioremediation of emerging pollutants. Frontiers in Marine Science, v. 10, p. 1-21, 2023. Disponível em: https://www.frontiersin.org/journals/marine-science/articles/10.3389/fmars.2023.1070905/full. DOI: https://doi.org/10.3389/fmars.2023.1070905

VAITHYANATHAN V. K.; VAIDYANATHAN, V. K.; CABANA, H. Laccase-driven transformation of high priority pesticides without redox mediators: towards bioremediation of contaminated wastewaters. Frontiers in Bioengineering and Biotechnology, v. 9, p. 1-13, 2021. DOI: https://doi.org/10.3389/fbioe.2021.770435

Disponível em: https://www.frontiersin.org/journals/bioengineering-and-biotechnology/articles/10.3389/fbioe.2021.770435/full.

WU, X. et al. Rapid biodegradation of the herbicide 2, 4-dichlorophenoxyacetic acid by Cupriavidus gilardii T-1. Journal of Agricultural and Food Chemistry, v. 65, n. 18, p. 3711-3720, 2017. Disponível em: https://pubs.acs.org/doi/abs/10.1021/acs.jafc.7b00544. DOI: https://doi.org/10.1021/acs.jafc.7b00544

XIANG, S. et al. Efficient degradation of phenoxyalkanoic acid herbicides by the alkali-tolerant Cupriavidus oxalaticus strain X32. Journal of Agricultural and Food Chemistry, v. 68, n. 12, p. 3786-3795, 2020. Disponível: https://pubs.acs.org/doi/abs/10.1021/acs.jafc.9b05061. DOI: https://doi.org/10.1021/acs.jafc.9b05061

YADAV, A. et al. Endophytic fungal communities and their biotechnological implications for agro-environmental sustainability. Folia Microbiologica, v. 67, p. 203-232, 2022. Disponível em: https://link.springer.com/article/10.1007/S12223-021-00939-0. DOI: https://doi.org/10.1007/s12223-021-00939-0

ZHAO, K. et al. Co-metabolism of microorganisms: A study revealing the mechanism of antibiotic removal, progress of biodegradation transformation pathways. Science of The Total Environment, v. 954, p. 176561, 2024. Disponível em: https://www.sciencedirect.com/science/article/abs/pii/S0048969724067172. DOI: https://doi.org/10.1016/j.scitotenv.2024.176561

Publicado

2025-11-16

Número

Sección

Artigos

Cómo citar

DA COSTA, Francislene Couto; GONÇALVES, Maria Jaqueline de Lima; PIMENTA, Krislly Emanuelly Moura; INOUE, Miriam Hiroko. BIORREMEDIAÇÃO E FITORREMEDIAÇÃO DO HERBICIDA 2,4-D E GLYPHOSATE – REVISÃO DE LITERATURA. ARACÊ , [S. l.], v. 7, n. 11, p. e10035 , 2025. DOI: 10.56238/arev7n11-184. Disponível em: https://periodicos.newsciencepubl.com/arace/article/view/10035. Acesso em: 5 dec. 2025.