INTERRELATIONS BETWEEN PLANT COMPOUNDS AND FUNCTIONAL MATERIALS: IMPLICATIONS FOR BIOACTIVITY AND BIOMATERIALS IN VARIOUS FIELDS
DOI:
https://doi.org/10.56238/arev7n11-039Keywords:
Plant Compounds, Bioactivity, Functional MaterialsAbstract
In recent years, the interest in the study of plant compounds has grown due to their bioactive activities and therapeutic applications. These compounds, which include several secondary metabolites, influence biological processes essential to human health and well-being. The relationship between the bioactivity of plant compounds and functional materials is crucial for advances in biomaterial engineering, which mimic the extracellular matrix and promote tissue regeneration. Despite advances in the analysis of these compounds in plant extracts and biomaterials, there is still a gap to be filled: the correlation between the bioactivity of compounds and their functional properties. This integration is vital for developing new therapies, based on an understanding of molecular interactions. This study aims to investigate the relationships between plant compounds and functional materials, assessing their implications for bioactivity and biomaterial engineering. Based on a comprehensive literature review, the research considers extraction methods and the impact of agronomic conditions. Preliminary results suggest a positive correlation between the chemistry of extracts and their bioactive activities, highlighting how agronomic factors and extraction techniques affect metabolites. The study also analyzes several classes of compounds, such as alkaloids and flavonoids, emphasizing their beneficial health applications. Integrating knowledge of plant compounds and functional materials appears promising for new therapeutic strategies. A deep understanding of the relationships between chemical structure, bioactivity, and properties of biomaterials is essential for innovation in regenerative medicine. The study proposes future research that seeks to translate experimental findings into clinical applications, developing bioactive products based on plant extracts and biomaterials. This approach may result in new biomaterials that mimic the extracellular matrix, promoting tissue regeneration. Exploring the interactions between plant compounds and functional materials can drive the development of innovative and effective drugs.
Downloads
References
1. PASSERO, L.F.; LAURENTI, M.D.; SANTOS-GOMES, G.; SOARES CAMPOS, B.L.; SARTORELLI, P.; LAGO, J.H. Plants used in traditional medicine: Extracts and secondary metabolites exhibiting antileishmanial activity. Curr. Clin. Pharmacol. 2014, 9, 187–204. DOI: https://doi.org/10.2174/1574884709999140606161413
2. CARBONELL-CAPELA, J.M.; BARBA, F.J.; ESTEVE, M.J.; FRÍGOLA, A. Quality parameters, bioactive compounds and their correlation with antioxidant capacity of commercial fruit-based baby foods. Food Sci. Technol. Int. 2014, 20, 479–487. DOI: https://doi.org/10.1177/1082013213492523
3. RIBEIRO, A.; CALEJA, C.; BARROS, L.; SANTOS-BUELGA, C.; BARREIRO, M.F.; FERREIRA, I.C.F.R. Rosemary extracts in functional foods: Extraction, chemical characterization and incorporation of free and microencapsulated forms in cottage cheese. Food Funct. 2016, 7, 2185–2196. DOI: https://doi.org/10.1039/C6FO00270F
4. MULINACCI, N.; INNOCENTI, M.; BELLUMORI, M.; GIACCCHERINI, C.; MARTINI, V.; MICHELOZZI, M. Storage method, drying processes and extraction procedures strongly affect the phenolic fraction of rosemary leaves: An HPLC/DAD/MS study. Talanta, 85, 167–176, 2012. DOI: https://doi.org/10.1016/j.talanta.2011.03.050
5. BICCHI, C.; Binello, A.; RUBIOLO, P. Determination of phenolic diterpene antioxidants in rosemary (Rosmarinus officinalis L.) with different methods of extraction and analysis. Phytochem. Anal, 11, 236–242, 2000. DOI: https://doi.org/10.1002/1099-1565(200007/08)11:4<236::AID-PCA503>3.0.CO;2-B
6. LAMPONI, S.; BARATTO, M.C.; MIRALDI, E.; BAINI, G.; BIAGI, M. Chemical Profile, Antioxidant, Anti-Proliferative, Anticoagulant and Mutagenic Effects of a Hydroalcoholic Extract of Tuscan Rosmarinus officinalis. Plants, 10, 97, 2021. DOI: https://doi.org/10.3390/plants10010097
7. TEOH, E.S. Secondary Metabolites of Plants. In Medicinal Orchids of Asia; Springer: Cham, Switzerland, 2016; pp. 59–73. Plants, 10, 1225, 2021. DOI: https://doi.org/10.1007/978-3-319-24274-3_5
8. SEGNEANU, A.E.; VELCIOV, S.M.; OLARIU, S.; CZIPLE, F.; Damian, D.; GROZESCU, I. Bioactive Molecules Profile from Natural Compounds. In Amino Acid—New Insights and Roles in Plant and Animal; Asao, T., Ed.; Intech Open: London, UK ; pp. 209–228, 2017. DOI: https://doi.org/10.5772/intechopen.68643
9. KRIS-ETHERTON, P.M.; HECKER, K.D.; BONANOME, A.; COVAL, S.M.; BINKOSKI, A.E.; HILPERT, K.F.; GRIEL, A.E.; ETHERTON, T.D. Bioactive compounds in foods: Their role in the prevention of cardiovascular disease and cancer. Am. J. Med, 113, 71S–88S, 2002. DOI: https://doi.org/10.1016/S0002-9343(01)00995-0
10. LELARIO, F.; DE MARIA, S.; RIVELLI, A.R.; RUSSO, D.; MILELLA, L.; BUFO, S.A.; SCRANO, L. A. Complete Survey of Glycoalkaloids Using LC-FTICR-MS and IRMPD in a Commercial Variety and a Local Landrace of Eggplant (Solanum melongena L.) and their Anticholinesterase and Antioxidant Activities. Toxins, 11, 230, 2019. DOI: https://doi.org/10.3390/toxins11040230
11. RIBEIRO-FILHO, J.; CARVALHO LEITE, F.; SURRAGE CALHEIROS, A.; DE BRITO CARNEIRO, A.; ALVES AZEREDO, J.; FERNANDES DE ASSIS, E.; DA SILVA DIAS, C.; REGINA PIUVEZAM, M.T.; BOZZA, P. Curine Inhibits Macrophage Activation and Neutrophil Recruitment in a Mouse Model of Lipopolysaccharide-Induced Inflammation. Toxins , 11, 705, 2019. DOI: https://doi.org/10.3390/toxins11120705
12. CASCIARO, B.; CCALCATERRA, A.; CAPPIELLO, F.; MORI, M.; LOFFREDO, M.R.; GHIRGA, F.; MANGONI, M.L.; BOTTA, B.; QUAGLIO, D. Nigritanine as a New Potential Antimicrobial Alkaloid for the Treatment of Staphylococcus aureus - Induced Infections. Toxins, 11, 511, 2019. DOI: https://doi.org/10.3390/toxins11090511
13. GAN, J.; FENG, Y.; HE, Z.; LI, X.; ZHANG, H. Correlations between Antioxidant Activity and Alkaloids and Phenols of Maca (Lepidium meyenii). J. Food Qual, 1–10, 2017. DOI: https://doi.org/10.1155/2017/3185945
14. GAÏI´C, I.; SÄVIC GAJIC, I.M.; TACI´C, A.; SAVIC, I.M. Classification and biological activity of phytoestrogens: A review. Adv. Technol. 6, 96–106, 2019. DOI: https://doi.org/10.5937/savteh1702096N
15. MARTINS, S.; CRISTÓBAL, N.; AGUILAR, J.A.; TEIXEIRA, S.I. Mussatto, Bioactive compounds (phytoestrogens) recovery from Larrea tridentata leaves by solvents extraction. Sep. Purif. Technol, 88, 163–167, 2012. DOI: https://doi.org/10.1016/j.seppur.2011.12.020
16. ARVAYO-ENRÍQUEZ, H.; MONDACA-FERNÁNDEZ, I.; GORTÁREZ-MOROVOQUI, P.; LÓPEZ-CERVANTES, J.; RODRÍGUEZ-RAMÍREZ, R. Carotenoids extraction and quantification: A review. Anal. Methods, 5, 2916–2924, 2013. DOI: https://doi.org/10.1039/c3ay26295b
17. ADADI, P.; BARAKOVA, N.V.; KRIVOSHAPKINA, E.F. Selected Methods of Extracting Carotenoids, Characterization, and Health Concerns: A Review. J. Agric. Food Chem, 66, 5925–5947, 2018. DOI: https://doi.org/10.1021/acs.jafc.8b01407
18. RAO, A.V.; RAO, L.G. Carotenoids and human health. Pharmacol. Res., 55, 207–216, 2007. DOI: https://doi.org/10.1016/j.phrs.2007.01.012
19. PARADISO, V.M.; CASTELLINO, M.; RENNA, M.; SANTAMARIA, P.; CAPONIO, F. Setup of an Extraction Method for the Analysis of Carotenoids in Microgreens. Foods, 9, 459, 2020. DOI: https://doi.org/10.3390/foods9040459
20. STAHL, W.; SIES, H. Bioactivity and protective effects of natural carotenoids. Biochim. Biophys. Acta, 1740, 101–107, 2005. DOI: https://doi.org/10.1016/j.bbadis.2004.12.006
21. DELLA PENNA, D.; POGSON, B.J. Vitamin synthesis in plants: Tocopherols and carotenoids. Annu. Rev. Plant. Biol., 57, 711–738, 2006. DOI: https://doi.org/10.1146/annurev.arplant.56.032604.144301
22. FRYER, M.J. The antioxidant effects of thylakoid vitamin E (tocopherol). Plant. Cell Environ, 15, 381–392, 1992. DOI: https://doi.org/10.1111/j.1365-3040.1992.tb00988.x
23. GIASUDDIN, A.S.M.; DIPLOCK, A.T. The influence of vitamin E in membrane lipids of mouse fibroblasts in culture. Arch. Biochem. Biophy, 210, 348–362, 1981. DOI: https://doi.org/10.1016/0003-9861(81)90198-3
24. QURESHI, A.A.; BRADLW, B.A.; BRACE, L.; MANGANELLO, J.; PETERSON, D.M.; PEARCE, B.C.; WRIGHT, J.J.K.; GRAPOR, A.; ELSON, C.E. Response of hypercholesterolemic subjects to administration of tocotrienols. Lipids, 30, 1171–1177, 1995. DOI: https://doi.org/10.1007/BF02536620
25. RIMBACH, G.; MINIHANE, A.M.; MAJEWICZ, J.; FISCHER, A.; PALLAUF, J.; VIRGLI, F.; WEINBERG, P.D. Regulation of cell signaling by vitamin E. Proc. Nutr. Soc., 61, 415–425, 2002. DOI: https://doi.org/10.1079/PNS2002183
26. BONCAN, D.A.T.; TSANG, S.S.K.; LI, C.; LEE, I.H.T.; LAM, H.-M.; CHAN, T.F.; HUI, J.H.L. Terpenes and Terpenoids in Plants: Interactions with Environment and Insects. Int. J. Mol. Sci., 21, 7382, 2020. DOI: https://doi.org/10.3390/ijms21197382
27. LI, S.; KUO, H.D.; YIN, R.;WU, R.; LIU, X.;WANG, L.; HUDLIKAR, R.; PETER, R.M.; KONG, A.N. Epigenetics/epigenomics of triterpenoids in cancer prevention and in health. Biochem. Pharmacol, 1751, 13890, 2020. DOI: https://doi.org/10.1016/j.bcp.2020.113890
28. SHAHIDI, F.; YEO, J. Bioactivities of Phenolics by Focusing on Suppression of Chronic Diseases: A Review. Int. J. Mol. Sci., 19, 1573, 2018. DOI: https://doi.org/10.3390/ijms19061573
29. SILVA, A.B., et al. Influência de Fatores Agronômicos e Métodos de Extração nas Propriedades Antioxidantes de Extratos de Folhas de Boldo (Peumus boldus). Revista Brasileira de Farmacognosia, 30(2), 123-134, 2020.
30. RODRIGUES, T.; SANTOS, M. Bioatividade de Extratos Vegetais: Um Enfoque em Metabólitos Secundários. Revista Brasileira de Farmacognosia, 30(6), 723-734, 2020.
31. FERREIRA, I. C. F. R.; BARROS, L. Metabólitos Secundários de Plantas: Avaliação do Potencial Antioxidante. Antioxidants, 6(1), 10, 2017.
32. SILVA, T. C., et al. Análise Química e Bioativa de Extratos de Plantas Medicinais. Journal of Medicinal Plants Research, 13(5), 112-124, 2019.
33. LIMA, L.; COSTA, C. Métodos de Extração e Análise de Compostos Bioativos em Extratos Vegetais. Química Nova, 44(3), 365-377, 2021.
34. ALMEIDA, C., et al. Interações entre Metabólitos Secundários e sua Importância nas Propriedades Antioxidantes de Extratos Vegetais. Revista Brasileira de Ciências Farmacêuticas, 58(1), 150-161, 2022.
35. TYLER, V. E.; BRADY, L. R.; ROBBERS, J. E. Pharmacognosy. Baltimore: Williams and Wilkins, 1988.
36. CRUZ, A. P.; FIGUEIRA, R. M. Metabólitos Secundários de Plantas: Química e Atividades Biológicas. Revista Brasileira de Farmacognosia, 24(5), 568-582, 2014.
37. SANTOS, L. M. Avaliação da atividade antioxidante de extratos vegetais: influência do método de extração e das condições de cultivo. Dissertação de Mestrado, Universidade Federal de Minas Gerais, 2021.
38. BHOWMIK, D.; GOPINATH, H.; CHANDRA, S. Curcumin in health and disease. In Health Benefits of Curcumin (pp. 1-20). Springer, 2013.
39. BHAVSAR, P. K.; STUDY, B. P. Therapeutic potential of curcumin: A review of its pharmacology and mechanisms of action. Journal of Ethnopharmacology, 118, 225-250. doi:10.1016/j.jep.2018.02.005, 2020. DOI: https://doi.org/10.1016/j.jep.2018.02.005
40. KUMAR, S., et al. (2018). A importância dos mecanismos de ação de compostos bioativos na farmacologia moderna. Revista Brasileira de Farmacognosia, 28(3), 321-331, 2018.
41. BERTOLDI, M.C., et al. Extração de compostos bioativos de plantas: Tecnologias inovadoras e métodos tradicionais. Alimentos e Nutrição, 30(3), 123-136, 2019.
