URBAN PLANNING AND ENVIRONMENTAL LICENSING – THE USE OF AI AS A MEDIATOR IN “DECISION ECOLOGIES” DISTRIBUTED ACROSS DATA

Authors

  • Valdemir Fonseca da Silva Author
  • Antonio Fluminhan Author
  • Hildelano Delanusse Theodoro Author
  • Adriana de Sá Leite de Brito Author
  • Felipe Piancatelli Author
  • Rhafic Concolato da Silva Author
  • Isabôhr Mizza Veloso dos Santos Author
  • Rafael Rodrigues Duque Author
  • Bruno Henrique Gomes Author
  • Marcelo Martins Farias Author
  • Ana Flávia Costa Eccard Author
  • Luana Beatriz Sales Pinon Author
  • Sinara Martins Camelo Author
  • Fábio Belemer Pereira Author
  • Milane de Vasconcelos Caldeira Tavares Author
  • Líverny Maria Furtado Chaves Author
  • José Hiago Bezerra Alves Author

DOI:

https://doi.org/10.56238/arev7n9-058

Keywords:

Artificial Intelligence, Urban Planning, Environmental Licensing, Democratic Governance

Abstract

Contemporary urban planning faces the challenge of integrating environmental, social, and economic variables in contexts of increasing complexity and conflicting interests. Environmental licensing, in turn, has become one of the main regulatory instruments mediating the relationship between land use and ecological preservation, demanding processes that are increasingly transparent, participatory, and technically qualified. In this context, artificial intelligence (AI) technologies emerge as tools capable of acting as mediators in “decision ecologies,” distributing analysis across multiple data sources, simulated scenarios, and stakeholder perspectives. More than simply automating steps, AI can enhance processes of negotiation and impact visualization, expanding the ability of public managers, experts, and communities to understand and intervene in the dilemmas of urban development. The object of study of this article is the use of artificial intelligence as a mediator in decision-making processes related to urban planning and environmental licensing, understanding AI not as a substitute for human deliberation, but as an agent articulating different flows of information. The research seeks to understand to what extent AI can foster distributed governance practices, aligning decision-making with principles of sustainability, environmental justice, and democratic participation. The guiding research question is: how can artificial intelligence operate as a mediator in distributed decision ecologies, enhancing transparency, effectiveness, and legitimacy in urban planning and environmental licensing processes? Theoretically, we draw on the works of Russell and Norvig (1995; 2002; 2010), Derrible (2019; 2025), Mayer-Schönberger and Cukier (2014), Yigitcanlar (2024), Hu and Gao (2023), Bostrom (2014), Floridi (2013; 2019), Kitchin (2014; 2021), Zuboff (2019), Kabir et al. (2021), Hidayat and Satwiko (2021), Brynjolfsson and McAfee (2014; 2017), among others. The research is qualitative in nature (Minayo, 2008), bibliographic and descriptive (Gil, 2008), and follows a comprehensive analytical approach (Weber, 1949). The findings show that artificial intelligence, when used as a mediator in urban planning and environmental licensing, enhances transparency by organizing and making data accessible, increases effectiveness by enabling predictive simulations and real-time analysis, and strengthens legitimacy by including multiple social actors in the decision-making process. It was observed that obstacles such as costs, data quality, and legal frameworks can be overcome through participatory governance, technical capacity building, and appropriate regulatory frameworks. Overall, AI emerges not only as a technological resource but also as an instrument of environmental justice, sustainability, and democratization of information.

Downloads

Download data is not yet available.

References

BOSTROM, N. Superintelligence: paths, dangers, strategies. Oxford: Oxford University Press, 2014.

BRYNJOLFSSON, E.; MCAFEE, A. The second machine age: work, progress, and prosperity in a time of brilliant technologies. New York: W. W. Norton & Company, 2014.

BRYNJOLFSSON, E.; MCAFEE, A. Machine, platform, crowd: harnessing our digital future. New York: W. W. Norton & Company, 2017.

DESLANDES, S. F.; MINAYO, M. C. S. Caminhos do pensamento: epistemologia e método. Rio de Janeiro: Fiocruz, 2002.

DERRIBLE, S. Urban engineering for sustainability. Cambridge: MIT Press, 2019.

DERRIBLE, S. The infrastructure book: how cities work and power our lives. Guilford: Globe Pequot, 2025.

DOS SANTOS, A. N. S. et al. Educação e Tecnologia – Um olhar crítico sobre a educação tecnológica a partir da perspectiva gramsciana e marxista. ARACÊ, [S. l.], v. 6, n. 3, p. 8150-8171, 2024. DOI: 10.56238/arev6n3-227. Disponível em: https://periodicos.newsciencepubl.com/arace/article/view/1456. Acesso em: 20 Ago. 2025.

DOS SANTOS, A. N. S. dos et al. Resíduos sólidos e design sustentável – Uma análise da reciclagem na “economia circular” à luz da Agenda 2030. ARACÊ , [S. l.], v. 7, n. 2, p. 7365–7391, 2025. DOI: 10.56238/arev7n2-164. Disponível em: https://periodicos.newsciencepubl.com/arace/article/view/3335. Acesso em: 20 Ago. 2025.

DOS SANTOS, A. N. S. dos et al. Territórios dos Ventos – Geopolítica, impactos ambientais e desafios da energia eólica no Brasil. ARACÊ , 7(6), 29407-29458. Disponível em: https://doi.org/10.56238/arev7n6-024 Acesso em 20 de Ago. de 2025.

FERREIRA, G. G. S. et al. Engenharias e Inteligência Artificial – Arquiteturas cognitivas para projetos, tomada de decisão, gestão de riscos e soluções sistêmicas. OBSERVATÓRIO DE LA ECONOMÍA LATINOAMERICANA, 23(7), e10699. Disponível em: https://doi.org/10.55905/oelv23n7-097 Acesso em 20 de Ago. 2025.

FLICK, U. Introdução à metodologia de pesquisa: um guia para iniciantes. Porto Alegre: Penso, 2009.

FLORIDI, L. The ethics of information. Oxford: Oxford University Press, 2013.

FLORIDI, L. The logic of information: a theory of philosophy as conceptual design. Oxford: Oxford University Press, 2019.

GIL, A. C. Métodos e técnicas de pesquisa social. 6. ed. São Paulo: Atlas, 2008.

HIDAYAT, N. F.; SATWIKO, P. The implementation of artificial intelligence in the environmental licensing process. International Journal of Advanced Computer Science and Applications, v. 12, n. 10, p. 613-618, 2021.

HU, Y.; GAO, S. Handbook of geospatial artificial intelligence. Cheltenham: Edward Elgar Publishing, 2023.

KABIR, M. H.; RAHMAN, M. A.; HOSSAIN, M. S. Explainable artificial intelligence for smart city application: a secure and trusted platform. IEEE Internet of Things Journal, v. 8, n. 8, p. 6114-6122, 2021.

KITCHIN, R. The data revolution: big data, open data, data infrastructures and their consequences. London: SAGE, 2014.

KITCHIN, R. Data lives: how data are made and shape our world. Bristol: Bristol University Press, 2021.

MAYER-SCHÖNBERGER, V.; CUKIER, K. Big data: a revolution that will transform how we live, work, and think. London: John Murray, 2014.

MINAYO, M. C. S. O desafio do conhecimento: pesquisa qualitativa em saúde. 11. ed. São Paulo: Hucitec, 2008.

RUSSELL, S.; NORVIG, P. Artificial intelligence: a modern approach. Englewood Cliffs: Prentice Hall, 1995.

RUSSELL, S.; NORVIG, P. Artificial intelligence: a modern approach. 2. ed. Upper Saddle River: Prentice Hall, 2002.

RUSSELL, S.; NORVIG, P. Artificial intelligence: a modern approach. 3. ed. Upper Saddle River: Prentice Hall, 2010.

SANTOS, A. N. S. dos et al. “Luz e aprendizagem”: integrando energia solar e educação ambiental no ensino por metodologias ativas com células fotovoltaicas. Cuadernos De Educación Y Desarrollo, 16(8), e5133. Disponível em: https://doi.org/10.55905/cuadv16n8-055 Acesso em 20 de Ago. 2025.

SANTOS, A. N. S. dos et al. Caminhos trancados: o labirinto dos desafios burocráticos e legais nas concessões florestais Federais no Brasil. OBSERVATÓRIO DE LA ECONOMÍA LATINOAMERICANA, 22(12), e8314. Disponível em: https://doi.org/10.55905/oelv22n12-182 Acesso em 20 de Ago. 2025.

SANTOS, A. N. S. dos et al. Gestão integrada de riscos em engenharia: aplicação de tecnologias inovadoras para promover qualidade de vida, segurança e sustentabilidade. OBSERVATÓRIO DE LA ECONOMÍA LATINOAMERICANA, 23(6), e10196. Disponível em: https://doi.org/10.55905/oelv23n6-034 Acesso em 20 de Ago. 2025.

STAKE, R. E. Pesquisa qualitativa: estudando como as coisas funcionam. Porto Alegre: Penso, 2011.

WEBER, M. A objetividade do conhecimento nas ciências sociais. São Paulo: Cultrix, 1949.

YIGITCANLAR, T. Urban artificial intelligence: a guidebook for understanding concepts and technologies of smart city AI. Cheltenham: Edward Elgar Publishing, 2024.

ZUBOFF, S. The age of surveillance capitalism: the fight for a human future at the new frontier of power. New York: Public Affairs, 2019.

Published

2025-09-04

Issue

Section

Articles

How to Cite

DA SILVA, Valdemir Fonseca et al. URBAN PLANNING AND ENVIRONMENTAL LICENSING – THE USE OF AI AS A MEDIATOR IN “DECISION ECOLOGIES” DISTRIBUTED ACROSS DATA. ARACÊ , [S. l.], v. 7, n. 9, p. e7824 , 2025. DOI: 10.56238/arev7n9-058. Disponível em: https://periodicos.newsciencepubl.com/arace/article/view/7824. Acesso em: 5 dec. 2025.