ARTIFICIAL INTELLIGENCE FOR CODE OPTIMIZATION FROM SANDBOX TO COLLECTIVE PERFORMANCE: A QUALITATIVE ANALYSIS

Authors

  • Lucas José Gasparin Corrêa Rufino Author
  • Marcello Pereira Benevides Author
  • Karina Daniela Garcia Benevides Author
  • David Felipe Alves dos Santos Author
  • Alex Pisciotta Author
  • Marco Rogério Silva Richetto Author
  • Márcia Regina de Oliveira Author
  • Roque Antônio de Moura Author

DOI:

https://doi.org/10.56238/arev7n9-036

Keywords:

Artificial Intelligence, Front-end, Back-end, Computational Optimization, Sandbox

Abstract

A sandbox is a secure environment where programming lines or codes are executed, tested, and even validated in a safe and isolated space. The development space acts as a functional space, where code can be modified and adjusted without affecting the product. The regulatory sandbox enables innovation and controlled operations. For example, the increasing integration of artificial intelligence (AI) in software development has driven process optimization and code refactoring. In this sense, this research investigates the effectiveness of different AIs in optimizing code performance, comparing the performance of functional codes developed by humans with versions optimized by four AI models covering the front-end and back-end areas at different levels of cyclomatic complexity. The methodology involved submitting code to a standardized refactoring prompt, with efficiency assessed by a quotient that considers accuracy, execution time, and code size (Q = A.t/S). The results indicated a substantial increase in the efficiency of AI-optimized codes compared to the original ones. However, performance variations were observed between AIs and development fronts. The conclusion is that AI is a resource for code optimization, but its effectiveness is influenced by the task context and the specific model used, highlighting the need for a conscious and contextual application of the technology.

Downloads

Download data is not yet available.

References

ADEL, A.; AHSAN, A.; DAVISON, C. (2024). ChatGPT Promises and Challenges in Education: Computational & Ethical Perspective. Education Science., 14, 814. DOI 10.3390/educsci14080814. DOI: https://doi.org/10.3390/educsci14080814

ALMEIDA, Y.; ALBUQUERQUE, D.; DANTAS FILHO, E.; MUNIZ, F.; SANTOS, K. F.; PERKUSICH, M.; ALMEIDA, H.; PERKUSICH, A. AICodeReview: Advancing code quality with AI-enhanced reviews. Software X, v. 26, 2024. DOI: https://doi.org/10.1016/j.softx.2024.101677 DOI: https://doi.org/10.1016/j.softx.2024.101677

ANTÔNIO, M. R., REGINA, O. M., GOUSSAIN, B. G. C. S., SILVA, M. B. (2024). Neuroergonomics approach in the workplace aiming to standardize movements and increase workers’ sense of well-being. 24(10), 472–482. https://doi.org/10.53660/CLM-3313-24H27 DOI: https://doi.org/10.53660/CLM-3313-24H27

BECKER, B. A., DENNY, P., FINNIE-ANSLEY, J., LUXTON-REILLY, A., PRATHER, J., & SANTOS, E. A. (2023). Programming is hard or at least it used to be: Educational Opportunities and Challenges of AI Code Generation. SIGCSE 2023. https://doi.org/10.1145/3545945.3569759. DOI: https://doi.org/10.1145/3545945.3569759

BENEVIDES, K. D. G.; RUFINO, L. J. G. C.; DOS SANTOS, D. F. A.; BENEVIDES, M. P.; PIMENTA, C. D.; DE OLIVEIRA, M. R.; DE MOURA, R. A. (2025). Inteligência artificial na educação de indivíduos adultos com 50 anos de idade ou mais: uma abordagem assistiva. ARACÊ, [S. l.], v7, n8, p.e7160, 2025. DOI: 10.56238/arev7n8-085. Disponível em: https://periodicos.newsciencepubl.com/arace/article/view/7160. Acesso em: 27 ago. 2025. DOI: https://doi.org/10.56238/arev7n8-085

BENEVIDES, M. P.; XAVIER, K. R. S. L.; et al. (2024) Sign talk assistive technology: real-time recognition of the libras typical alphabet using artificial intelligence. RGSA, v. 18, n. 12, p. e010610, 2024. DOI: https://doi.org/10.24857/rgsa.v18n12-214 DOI: https://doi.org/10.24857/rgsa.v18n12-214

BORGHOFF, U. M.; MINAS, M.; MÖNCH, K. (2025). Generative AI in student software development projects: A user study on experiences and self-assessment. In: Proceedings of the 6th European Conf. Software Eng. Education, 2025. DOI: https://doi.org/10.1145/3723010.3723012. DOI: https://doi.org/10.1145/3723010.3723012

CINAR, A.B., & BILODEAU, S. (2024). Incorporating AI into the Inner Circle of Emotional Intelligence for Sustainability. Sustainability, 16, 6648. https://doi.org/10.3390/su16156648. DOI: https://doi.org/10.3390/su16156648

COELHO, M. H.; SARTOR, M.; MANENTE, M. T.; FRIGO, L. B. e POZZEBON, E. (2017). Tecnologia, inovação e educação: caminhando juntas para o desenvolvimento de smart cities. In: Revista novas tecnologias na Educação – UFRGS. v.15, n. 2. DOI: https://doi.org/10.22456/1679-1916.79185

CONG, Y. (2024). AI Language Models: An Opportunity to Enhance Language Learning. Informatics, 11, 49. https://doi.org/10.3390/informatics11030049. DOI: https://doi.org/10.3390/informatics11030049

COSTA, J. C. L.; SANTOS, D. F. A.; OLIVEIRA, M. R. de; MOURA, R. A. (2025). Aprendizagem com solução de problemas reais para aprimoramento discente na injunção socioprofissional. Revista CLCS, [S l], v18, n 2, p. e15288, 2025. DOI: 10.55905/revconv.18n.2-100. DOI: https://doi.org/10.55905/revconv.18n.2-100

DA SILVA FILHO, A. L.; BENEVIDES, M. P.; NOHARA, E. L.; DE MOURA, R. A. (2025). Engenharia mecânica na construção de máquina-ferramenta portátil para usinar peças de até 1200 milímetros de diâmetro. ARACÊ, [S. l.], v7, n7, p.40298–40314. DOI: 10.56238/arev7n7-295. Disponível em: https://periodicos.newsciencepubl.com/arace/article/view/6788. Acesso: 28ago2025. DOI: https://doi.org/10.56238/arev7n7-295

EGARA, F. O., & MOSIMEGE, M. (2024). Exploring the integration of artificial intelligence-based ChatGPT into mathematics instruction: Perceptions, Challenges, and Implications for Educators. Education Sciences, 14, 742. https://doi.org/10.3390/educsci14070742. DOI: https://doi.org/10.3390/educsci14070742

FAN, G. et al. The impact of AI-assisted pair programming on student motivation, programming anxiety, collaborative learning, and programming performance: a comparative study with traditional pair programming and individual approaches. International Journal of STEM Education, v. 12, n. 1, p. 16, 2025. DOI: https://doi.org/10.1186/s40594-025-00537-3

FERNÁNDEZ-HERRERO, J. (2024). Evaluating Recent Advances in Affective Intelligent Tutoring Systems: A Scoping Review of Educational Impacts and Future Prospects. Educ. Sci., 14, 839. https://doi.org/10.3390/educsci14080839. DOI: https://doi.org/10.3390/educsci14080839

HERMANN, E. Artificial intelligence and mass personalization of communication content—an ethical and literacy perspective. New Media & Society, v. 24, p. 1258-1277, 2021. DOI: https://doi.org/10.1177/14614448211022702 . DOI: https://doi.org/10.1177/14614448211022702

LEWOWSKI, T.; MADEYSKI, L. (2022). Code smells detection using artificial intelligence techniques: A business-driven systematic review. Developments in Information & Knowledge Management for Business Applications, p. 285-319, 2022. DOI: https://doi.org/10.1007/978-3-030-77916-0_12

MIGUEL, P. A. C.; FLEURY, A.; MELLO, C. H. P.; NAKANO, D. N.; LIMA, E. P.; TURRIONI, J. B.; HO, L. L.; MORABITO, R.; MARTINS, R. A.; SOUSA, R.; COSTA, S. E. G.; PUREZA, V. 2018. Metodologia de pesquisa em engenharia de produção e gestão de operações. 3ª Ed. Rio de Janeiro: Editora GEN LTC. 2018. ISBN 978-853529134-6. ISBN 13 – 978-8535291346.

MOURA, RA DE, SANTOS, DFA, BENEVIDES, MP, RICHETTO, MRS, OLIVEIRA, MR DE, & SILVA, MB (2024). Neurociência e ergonomia aplicadas como ciências comportamentais profissionais para longevidade saudável. Revista De Gestão - RGSA , 18 (12), e09741. https://doi.org/10.24857/rgsa.v18n12-077 DOI: https://doi.org/10.24857/rgsa.v18n12-077

OLIVEIRA, M. R.; BENEVIDES, K. D. G.; RUFINO, L. J. G. C.; SANTOS, D. F. A.; BENEVIDES, M. P.; MOURA, R. A. (2025). Direito Digital e sua limitação no uso da inteligência artificial hodierna: um ponto para reflexão e ações requeridas. CLCS, [S. l.], v. 18, n. 7, p. e19679, 2025. DOI: 10.55905/revconv.18n.7-341. https://ojs.revistacontribuciones.com/ojs/index.php/clcs/article/view/19679 DOI: https://doi.org/10.55905/revconv.18n.7-341

SEO, K., TANG, J., ROLL, I., FELS, S., & YOON, D. (2021). The impact of artificial intelligence on learner–instructor interaction in online learning. International Journal of Educational Technology in Higher Education, 18, 54. https://doi.org/10.1186/s41239-021-00292-9. DOI: https://doi.org/10.1186/s41239-021-00292-9

SILVA, E. A.; CAMARGO, A. A.; SILVA, M. B.; MOURA, R. A. (2024). Neuroergonomía y Tecnologías inmersivas para lograr un envejecimiento saludable sin dolor y además sin ortesis. Revista Exatas. V.30. UNITAU. DOI: https://doi.org/10.69609/1516-2893.2024.v30.n2.a3916 DOI: https://doi.org/10.69609/1516-2893.2024.v30.n2.a3916

Published

2025-09-03

Issue

Section

Articles

How to Cite

RUFINO , Lucas José Gasparin Corrêa; BENEVIDES, Marcello Pereira; BENEVIDES , Karina Daniela Garcia; DOS SANTOS , David Felipe Alves; PISCIOTTA, Alex; RICHETTO, Marco Rogério Silva; DE OLIVEIRA , Márcia Regina; DE MOURA, Roque Antônio. ARTIFICIAL INTELLIGENCE FOR CODE OPTIMIZATION FROM SANDBOX TO COLLECTIVE PERFORMANCE: A QUALITATIVE ANALYSIS. ARACÊ , [S. l.], v. 7, n. 9, p. e7781 , 2025. DOI: 10.56238/arev7n9-036. Disponível em: https://periodicos.newsciencepubl.com/arace/article/view/7781. Acesso em: 5 dec. 2025.