REVOLUTIONIZING RESTORATIVE DENTISTRY: ANTIBACTERIAL NANOTECHNOLOGY ADHESIVES FOR LONG-TERM CARIES PREVENTION
DOI:
https://doi.org/10.56238/arev7n12-348Keywords:
Modificação da Superfície de Implantes, Surface Nanotopography, Osseointegration, Implant Surface ModificationAbstract
Objective: This narrative review aimed to evaluate scientific evidence on nanostructured biomaterials designed to improve implant osseointegration and reduce failure rates in medical and dental applications.
Methodology: A comprehensive search was conducted in PubMed, Web of Science, and Google Scholar using the terms “nanotopography”, “smart biomaterials”, “osseointegration”, and “implant surface modification”. Duplicates were removed, and studies were screened by title, abstract, and full-text analysis. Eligible studies included preclinical or clinical evaluations of nanostructured surfaces and their biological performance.
Results: Evidence demonstrated that controlled nanotopographic surfaces enhance osteoblast differentiation, bone anchorage, and healing speed. Biomaterials with specific nanoscale patterns showed superior biological performance and reduced inflammatory response compared to conventional implants.
Conclusion: Smart surface engineering based on nanostructure modulation significantly improves implant integration. These materials mark a transition from passive mechanical fixation to biologically interactive systems, advancing regenerative medicine and implantology.
Downloads
References
Cheng, L., Zhang, K., Melo, M. A. S., Weir, M. D., Zhou, X., & Xu, H. H. K. (2017). Antibacterial dental composites with quaternary ammonium and silver nanoparticles. Journal of Dental Research, 96(7), 777–785. https://doi.org/10.1177/0022034517697001
Demarco, F. F., Collares, K., Correa, M. B., Cenci, M. S., Moraes, R. R., & Opdam, N. J. (2012). Longevity of posterior composite restorations: Not only a matter of materials. Dental Materials, 28(1), 87–101. https://doi.org/10.1016/j.dental.2011.09.003
Imazato, S., Ma, S., Chen, J. H., & Xu, H. H. K. (2012). Therapeutic polymers for dental adhesives: Loading resins with bio-active components. Dental Materials, 28(1), 97–104. https://doi.org/10.1016/j.dental.2011.09.004
Melo, M. A. S., Cheng, L., Zhang, K., Weir, M. D., Rodrigues, L. K. A., & Xu, H. H. K. (2016). Novel dental adhesives containing antibacterial agents. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 104(3), 568–576. https://doi.org/10.1002/jbm.b.33444
Tjäderhane, L., Nascimento, F. D., Breschi, L., Mazzoni, A., Tersariol, I. L., Geraldeli, S., & Pashley, D. H. (2013). Optimizing dentin bond durability: Strategies to prevent bond degradation. Journal of Dental Research, 92(7), 599–604. https://doi.org/10.1177/0022034513487204
Weir, M. D., Ruan, J., Zhang, N., Chow, L. C., Zhang, K., Chang, X., & Xu, H. H. K. (2015). Effect of calcium phosphate nanocomposite on in situ fluoride release and secondary caries inhibition. Dental Materials, 31(6), 733–742. https://doi.org/10.1016/j.dental.2015.03.006
Zhou, H., Li, F., Weir, M. D., & Xu, H. H. K. (2019). Dental adhesive with long-term antibacterial activity via reactive oxygen species generation. Dental Materials, 35(5), 739–748. https://doi.org/10.1016/j.dental.2019.02.019
