AUTOMATION OF SPREADSHEET READING WITH ARTIFICIAL INTELLIGENCE INTEGRATION: DEVELOPMENT OF THE SHEET2PROMPT API APPLICATION
DOI:
https://doi.org/10.56238/arev7n12-097Keywords:
Artificial Intelligence, Automation, APIs, Data Processing, SpreadsheetsAbstract
This article presents the development of a web application called Sheet2Prompt API, designed to automate the reading of Google Sheets spreadsheets and integrate with artificial intelligence (AI) models for generating summaries and automated responses. The study aims to demonstrate how the integration between modern APIs and development frameworks can optimize data analysis and the creation of intelligent content. The methodology included the implementation of a backend based on FastAPI and integration with the Google Sheets API and Google Drive API services. The theoretical foundation is based on authors such as Ferreira (2025), Boente (2025), and Dos Santos (2020; 2025), who discuss the importance of automation, human-computer interaction, and adaptive logic in the context of applied AI. The results demonstrated that the developed system was able to perform accurate readings and generate coherent responses, validating the proposed efficiency of the architecture. It is concluded that the application represents an advance in the use of AI for task automation and can be expanded to different business and educational contexts.
Downloads
References
ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 6022:2018 – Informação e documentação – Artigo em publicação periódica técnica e/ou científica – Apresentação. Rio de Janeiro, 2018.
BOENTE, Alfredo Nazareno Pereira. Inovação e interação humano-computador na era da inteligência artificial. Revista Aracê, v. 7, n. 10, 2025. DOI: 10.56238/arev7n10-149.
BROWN, Tom B.; MANN, Benjamin; RYDER, Nick; SUBBIAH, Melanie; KAPLAN, Jared; DHARIWAL, Prafulla; ... (et al.). Language models are few-shot learners. In: Advances in neural information processing systems (NeurIPS). 2020. p. 1877-1901.
DOS SANTOS, Ricardo Marciano. Proposição de um modelo de interação humano-computador baseado em lógica fuzzy para aferição de dados biofísicos. Rio de Janeiro, 2020.
FASTAPI. FastAPI Documentation. Disponível em: https://fastapi.tiangolo.com. Acesso em: 24 set. 2025.
FERREIRA, Vinícius Marques da Silva. Automação e transformação digital: o papel da inteligência artificial no processamento de dados. Revista Aracê, v. 7, n. 10, 2025. DOI: 10.56238/arev7n10-149.
GOOGLE. Google Drive API Documentation. Disponível em: https://developers.google.com/drive/api. Acesso em: 24 set. 2025.
GOOGLE. Google Sheets API Documentation. Disponível em: https://developers.google.com/sheets/api. Acesso em: 24 set. 2025.
JONES, Llion; GOMEZ, Aidan N.; KAISER, Lukasz; POLOSUKHIN, Illia. Attention is all you need. In: Advances in neural information processing systems (NIPS). 2017. p. 5998-6008.
O’NEIL, Cathy. Weapons of math destruction: How big data increases inequality and threatens democracy. New York: Crown, 2016.
OPENAI. Documentação ChatGPT e APIs. Disponível em: https://platform.openai.com/docs. Acesso em: 24 set. 2025.
PASQUALE, Frank. The black box society: The secret algorithms that control money and information. Cambridge: Harvard University Press, 2015.
SHNEIDERMAN, Ben. Human-centered AI: Reliable, safe & trustworthy. International Journal of Human-Computer Interaction, v. 36, n. 6, p. 495-504, 2020.
VASWANI, Ashish; SHAZEER, Noam; PARMAR, Niki; USZKOREIT, Jakob;
