INTELLIGENT DIGITAL FLOW: TRIAGE, PATIENT PORTAL, AND REMOTE MONITORING IN EMERGENCY AND URGENT CARE
DOI:
https://doi.org/10.56238/arev7n12-075Keywords:
Intelligent Digital Flow, Digital Triage, AI in Emergency Care, Patient Portal, Remote Monitoring, Emergency ServicesAbstract
Emergency departments worldwide face increasing pressure due to population aging, multimorbidity, and workforce shortages, resulting in prolonged waiting times, overcrowding, and reduced quality of care. This study evaluates the impact of implementing an intelligent digital flow in emergency care, integrating AI-based digital triage, active patient communication portals, and post-discharge remote monitoring. The methodology consisted of a narrative literature review and analysis of real-world implementation cases. Findings indicate that digital triage systems achieve 88.5% specificity for predicting low-risk patients and 88.5% sensitivity for high-acuity cases, demonstrating superior accuracy compared with traditional triage. The Virtual Queue powered by predictive AI reduced patient length of stay in emergency departments by 60%. Furthermore, the integration of AI and 5G technology enables real-time data sharing between ambulances and hospital teams, supporting immediate clinical decision-making before patient arrival. Remote patient monitoring has the potential to reduce hospital readmissions by up to 76%, strengthening continuity of care. Additionally, the integration of health information systems and standardized referral and counter-referral protocols improves operational efficiency and communication across services.
Downloads
References
A3DATA. Fila Virtual com Inteligência Artificial na Rede Mater Dei de Saúde. Belo Horizonte, 2025. Disponível em: https://a3data.com.br/. Acesso em: 22 nov. 2025.
APM. IA e 5G devem transformar atendimentos emergenciais no Brasil. São Paulo, 2025. Disponível em: https://www.apm.org.br/. Acesso em: 23 nov. 2025.
BRASIL. Ministério da Saúde. Atenção às Urgências e Emergências: diretrizes organizacionais. Brasília, 2020. Disponível em: https://www.gov.br/saude/. Acesso em: 19 nov. 2025.
BRASIL. Ministério da Saúde. Rede de Atenção às Urgências e Emergências: estrutura e funcionamento. Brasília, 2023. Disponível em: https://www.gov.br/saude/. Acesso em: 20 nov. 2025.
BRASIL. Ministério da Saúde. Política Nacional de Atenção às Urgências: atualização e diretrizes. Brasília, 2024. Disponível em: https://www.gov.br/saude/. Acesso em: 21 nov. 2025.
CHENG, W. et al. Predicting emergency department waiting times with machine learning. BMC Medical Informatics and Decision Making, v. 20, p. 1–11, 2020. Disponível em: https://doi.org/10.1186/s12911-020-1026-0. Acesso em: 20 nov. 2025.
EBERHARDT, J. et al. Artificial intelligence for triage in emergency care. Nature Medicine, v. 27, p. 1–4, 2021. Disponível em: https://doi.org/10.1038/s41591-021-01328-7. Acesso em: 18 nov. 2025.
GREEN, L. et al. Patient flow forecasting in emergency departments. Operations Research for Health Care, v. 27, p. 100–150, 2020. Disponível em: https://doi.org/10.1016/j.orhc.2020.100276. Acesso em: 24 nov. 2025. DOI: https://doi.org/10.1016/j.orhc.2020.100276
HUMMEL, S. et al. Validation of an AI-enabled digital triage tool in emergency departments. BMJ Open, v. 12, p. 1–9, 2022. Disponível em: https://bmjopen.bmj.com/. Acesso em: 19 nov. 2025.
IRVIN, V. L. et al. Impact of patient portals on patient engagement and outcomes. Journal of Medical Internet Research, v. 23, n. 6, 2021. Disponível em: https://www.jmir.org/. Acesso em: 18 nov. 2025.
KRUSE, C. S. et al. Telemedicine, patient portals, and digital communication in emergency settings. JMIR Medical Informatics, v. 8, n. 4, 2020. Disponível em: https://medinform.jmir.org/. Acesso em: 23 nov. 2025.
MCCOY, T. et al. Emergency department prediction models to improve patient flow. Journal of the American Medical Informatics Association, v. 28, n. 9, p. 1–10, 2021. Disponível em: https://doi.org/10.1093/jamia/ocab045. Acesso em: 22 nov. 2025. DOI: https://doi.org/10.1093/jamia/ocab045
MENDONÇA, A. P. et al. Tecnologias de informação em serviços de urgência e emergência: revisão integrativa. Revista Brasileira de Enfermagem, v. 75, 2022. Disponível em: https://doi.org/10.1590/0034-7167-2020-0582. Acesso em: 17 nov. 2025.
RAN, L. et al. Remote monitoring and IoT in emergency care. IEEE Internet of Things Journal, 2022. Disponível em: https://doi.org/10.1109/JIOT.2022.3145223. Acesso em: 24 nov. 2025.
SANTANA, A. C. et al. Fat tissue morphology of long-term sex steroid deficiency and estrogen treatment in female rats. Fertility and Sterility, v. 95, n. 4, p. 1478–1481, 2011. Disponível em: https://pubmed.ncbi.nlm.nih.gov/21315340/ Acesso em: 24 nov. 2025. DOI: https://doi.org/10.1016/j.fertnstert.2011.01.020
SANTOS, Ricardo Marciano dos; FRÓES, Maira Monteiro; BOENTE, Alfredo Nazareno Pereira. Pressupostos teóricos e técnicos para uma interface de transdução biofísica e semiótica aplicável à neurobiologia de sistemas. In: SIMPEP – Simpósio de Engenharia de Produção, 23., 2016, Bauru. Anais… Bauru: SIMPEP, 2016. Disponível em: https://www.researchgate.net/profile/Ricardo-Santos-77/publication/324896780_PRESSUPOSTOS_TEORICOS_E_TECNICOS_PARA_UMA_INTERFACE_DE_TRANSDUCAO_BIOFISICA_E_SEMIOTICA_APLICAVEL_A_NEUROBIOLOGIA_DE_SISTEMAS/links/5ae9cf060f7e9b837d3c193e/PRESSUPOSTOS-TEORICOS-E-TECNICOS-PARA-UMA-INTERFACE-DE-TRANSDUCAO-BIOFISICA-E-SEMIOTICA-APLICAVEL-A-NEUROBIOLOGIA-DE-SISTEMAS.pdf. Acesso em: 27 nov. 2025
SHAW, J. et al. Patient digital navigation and support after emergency discharge. Telemedicine and e-Health, v. 27, n. 8, p. 1–12, 2021. Disponível em: https://doi.org/10.1089/tmj.2020.0276. Acesso em: 18 nov. 2025.
TOPOL, E. Deep Medicine: How Artificial Intelligence Can Make Healthcare Human Again. New York: Basic Books, 2019.
WHO. Global strategy on digital health 2020–2025. Genebra, 2021. Disponível em: https://www.who.int/. Acesso em: 17 nov. 2025.
WUNSCH, L. et al. UbiTriagem 2: mobile and ubiquitous computing to support emergency triage. Journal of Medical Systems, v. 42, 2018. Disponível em: https://doi.org/10.1007/s10916-018-0933-4. Acesso em: 25 nov. 2025.
