DEVELOPMENT OF AN ONLINE CONTINUOUS WATER QUALITY MONITORING SYSTEM – A CASE STUDY IN BABITONGA BAY
DOI:
https://doi.org/10.56238/arev7n12-072Keywords:
Monitoring, Continuous, Water Quality, SystemAbstract
The increasing pressure on coastal aquatic environments resulting from human activities demands improvements in water quality monitoring methods. The aim of this study was to develop an online continuous monitoring system focused on the early detection of real-time environmental changes, applied to Babitonga Bay (SC), Brazil. The study began with an assessment of the limitations of traditional point-sampling methods and the need for high-frequency data to support preventive environmental management. The methodology adopted an interdisciplinary approach, integrating knowledge from environmental sciences, information technology, and engineering, and included defining system requirements and developing the technological infrastructure. The results indicated that the system is effective in identifying atypical critical events, such as variations in pH, dissolved oxygen, and temperature, thereby enabling rapid responses from regulatory agencies and other stakeholders. The study acknowledges challenges such as the need for periodic sensor calibration and operational costs but recommends expanding the monitoring network and incorporating machine learning algorithms. Finally, the research reinforces the relevance of online continuous monitoring as a strategic tool for sustainable water management and the conservation of aquatic ecosystems.
Downloads
References
ABREU, A. C. A. de. Avaliação dos processos de mistura na Baía da Babitonga (SC) em cenários de mudanças climáticas. 2021. Universidade Federal do Paraná, Curitiba, Paraná, 2021.
BARROS, V. G. et al. Hydrological mixing and geochemical processes characterization in an estuarine/mangrove system using environmental tracers in Babitonga Bay (Santa Catarina, Brazil). Continental Shelf Research, v. 28, n. 4–5, p. 682–695, mar. 2008. DOI: https://doi.org/10.1016/j.csr.2007.12.006
BIEROZA, Magdalena et al. Advances in Catchment Science, Hydrochemistry, and Aquatic Ecology Enabled by High-Frequency Water Quality Measurements. Environmental Science & Technology, [s. l.], v. 57, n. 12, p. 4701–4719, 2023.
BRASIL. Conselho Nacional do Meio Ambiente (CONAMA). Resolução nº 01, de 23 de janeiro de 1986. Dispõe sobre critérios básicos e diretrizes gerais para a avaliação de impacto ambiental. Diário Oficial da União: seção 1, Brasília, DF, 17 fev. 1986.
BURNS, Douglas A. et al. Monitoring the riverine pulse: Applying high‐frequency nitrate data to advance integrative understanding of biogeochemical and hydrological processes. WIREs Water, [s. l.], v. 6, n. 4, 2019. DOI: https://doi.org/10.1002/wat2.1348
CARVALHO, Laurence et al. Protecting and restoring Europe’s waters: An analysis of the future development needs of the Water Framework Directive. Science of The Total Environment, [s. l.], v. 658, p. 1228–1238, 2019. DOI: https://doi.org/10.1016/j.scitotenv.2018.12.255
CHEN, Y et al. A review of the artificial neural network models for water quality prediction. Applied Sciences, [s. l.], v. 10, p. 5776, 2020. DOI: https://doi.org/10.3390/app10175776
CHEN, M. et al. Early Warning Method for Regional Water Resources Carrying Capacity Based on the Logical Curve and Aggregate Warning Index. International Journal of Environmental Research and Public Health, v. 17, n. 7, p. 2206, 25 mar. 2020. DOI: https://doi.org/10.3390/ijerph17072206
CONAMA. Resolução CONAMA no 357, de 17 de março de 2005. Estabelece a classificação dos corpos d’água e os padrões de qualidade da água. Conselho Nacional do Meio Ambiente, , 2005.
CORAGGIO, E. et al. Water Quality Sampling Frequency Analysis of Surface Freshwater: A Case Study on Bristol Floating Harbour. Frontiers in Sustainable Cities, v. 3, 31 jan. 2022. DOI: https://doi.org/10.3389/frsc.2021.791595
CREMER, M. J.; PINHEIRO, P. C.; SOUZA, R. M.; SOARES, M. O.; ZANARDI-LAMARDO, E.; PEREIRA, F. R.; SCHWARZ, R. Diagnóstico ambiental da Baía da Babitonga. Joinville: Univille, 2006. 160 p.
FINK, D. Caracterização das colônias de aves aquáticas na Baía da Babitonga e avaliação preliminar de sua contaminação. 2013b. Universidade Regional de Joinville - UNIVILLE, 2013.
GAREL, Erwan; NUNES, Susana; NETO, João Magalhães; FERNANDES, Rodrigo; NEVES, Ramiro; MARQUES, João Carlos; FERREIRA, Óscar. The autonomous Simpatico system for real-time continuous water-quality and current velocity monitoring: examples of application in three Portuguese estuaries. Geo-Marine Letters, v. 29, n. 5, p. 331–341, 2009. DOI: https://doi.org/10.1007/s00367-009-0147-5
HERNANDEZ-RAMIREZ, A. G. et al. Detection, provenance and associated environmental risks of water quality pollutants during anomaly events in River Atoyac, Central Mexico: A real-time monitoring approach. Science of The Total Environment, v. 669, p. 1019–1032, jun. 2019. DOI: https://doi.org/10.1016/j.scitotenv.2019.03.138
HOU, D. et al. An early warning and control system for urban, drinking water quality protection: China’s experience. Environmental Science and Pollution Research, v. 20, n. 7, p. 4496–4508, 18 jul. 2013. DOI: https://doi.org/10.1007/s11356-012-1406-y
IBAMA. Proteção e controle de ecossistemas costeiros: manguezal da Baía de Babitonga. Brazil: Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis, 1998.
KEISER, David A; SHAPIRO, Joseph S. Consequences of the Clean Water Act and the Demand for Water Quality. The Quarterly Journal of Economics, [s. l.], v. 134, n. 1, p. 349–396, 2019. DOI: https://doi.org/10.1093/qje/qjy019
KERMORVANT, C. et al. Understanding links between water-quality variables and nitrate concentration in freshwater streams using high frequency sensor data. PLOS ONE, v. 18, n. 6, p. e0287640, 30 jun. 2023. DOI: https://doi.org/10.1371/journal.pone.0287640
KIRCHNER, J. W. et al. The fine structure of water‐quality dynamics: the (high‐frequency) wave of the future. Hydrological Processes, v. 18, n. 7, p. 1353–1359, 23 maio 2004. DOI: https://doi.org/10.1002/hyp.5537
KÖPPEN, W. Climatologia: com um estúdio de los climas de la tierra. Climatology, 1948.
KRKLJEŠ, Damir B.; KITIĆ, Goran V.; PETES, Csaba M.; BIRGERMAJER, Slobodan S.; STANOJEV, Jovana D.; BAJAC, Branimir M.; PANIĆ, Marko N.; RADONIĆ, Vasa M.; BRČESKI, Ilija D.; ŠTRAVS, Rok M.; JANKOVIĆ, Nikolina N.; MATOVIĆ, Jovan B. Multiparameter Water Quality Monitoring System for Continuous Monitoring of Fresh Waters. IEEE Sensors Journal, v. 24, n. 7, p. 11246-11259, 1 abr. 2024. DOI: https://doi.org/10.1109/JSEN.2024.3368560
LEIGH, C. et al. Predicting sediment and nutrient concentrations from high-frequency water-quality data. PLOS ONE, v. 14, n. 8, p. e0215503, 30 ago. 2019b. DOI: https://doi.org/10.1371/journal.pone.0215503
MCBRIDE, Chris G.; ROSE, Kevin C. Automated High-frequency Monitoring and Research. In: LAKE RESTORATION HANDBOOK. Cham: Springer International Publishing, 2018. p. 419–461. DOI: https://doi.org/10.1007/978-3-319-93043-5_13
MCDOWELL, R. W. et al. Monitoring to detect changes in water quality to meet policy objectives. Scientific Reports, [s. l.], v. 14, n. 1, p. 1914, 2024. DOI: https://doi.org/10.1038/s41598-024-52512-7
MEINSON, Pille et al. Continuous and high-frequency measurements in limnology: history, applications, and future challenges. Environmental Reviews, [s. l.], v. 24, n. 1, p. 52–62, 2016. DOI: https://doi.org/10.1139/er-2015-0030
MELLO, Y. R. Distribuição de precipitação pluviométrica média na região da serra do mar de Santa Catarina e sua relação com a orografia. 2020. Universidade da Região de Joinville, Joinville, 2020.
MELLO, Y.; ET AL. Distribuição de precipitação pluviométrica na região de Joinville. Estudos Geográficos: Revista Eletrônica de Geografia, v. 13, n. 1, p. 78–93, 2015.
PELLERIN, Brian A. et al. Emerging Tools for Continuous Nutrient Monitoring Networks: Sensors Advancing Science and Water Resources Protection. JAWRA Journal of the American Water Resources Association, [s. l.], v. 52, n. 4, p. 993–1008, 2016. DOI: https://doi.org/10.1111/1752-1688.12386
RODE, Michael et al. Sensors in the Stream: The High-Frequency Wave of the Present. Environmental Science & Technology, [s. l.], v. 50, n. 19, p. 10297–10307, 2016. DOI: https://doi.org/10.1021/acs.est.6b02155
ROZEMEIJER, J. et al. Best practice in high-frequency water quality monitoring for improved management and assessment; a novel decision workflow. Environmental Monitoring and Assessment, [s. l.], v. 197, n. 4, p. 353, 2025. DOI: https://doi.org/10.1007/s10661-025-13795-z
SKINNER, Dominic; LANGFORD, John. Legislating for sustainable basin management: the story of Australia’s Water Act (2007). Water Policy, [s. l.], v. 15, n. 6, p. 871–894, 2013. DOI: https://doi.org/10.2166/wp.2013.017
VAN GEER, Frans C.; KRONVANG, Brian; BROERS, Hans Peter. High-resolution monitoring of nutrients in groundwater and surface waters: process understanding, quantification of loads and concentrations, and management applications. Hydrology and Earth System Sciences, [s. l.], v. 20, n. 9, p. 3619–3629, 2016. DOI: https://doi.org/10.5194/hess-20-3619-2016
ZHAO, N. et al. Early Warning of Sudden Water Pollution Accident Risks Based on Water Quality Models in the Three Gorges Dam Area. Water, v. 16, n. 18, p. 2679, 20 set. 2024. DOI: https://doi.org/10.3390/w16182679
