GENERATION OF PERSONALIZED READING RECOMMENDATIONS WITH ARTIFICIAL INTELLIGENCE INTEGRATION: DEVELOPMENT OF THE BOOKSUGGEST AI APPLICATION
DOI:
https://doi.org/10.56238/arev7n12-061Keywords:
Recommendation Systems, Artificial Intelligence, Reading, Personalization, Generative AIAbstract
Recommendation systems have become central elements in contemporary digital platforms, thereby assisting users in making decisions related to content consumption. However, reading-based recommendations still have strong characteristics such as dependence on collective evaluations, popularity algorithms, or superficial metadata. This article presents a new possibility: BookSuggest AI, a recommendation system that integrates personal reading history, recorded by the user in Google Sheets spreadsheets, with Generative Artificial Intelligence models. Based on classic authors of recommendation systems, such as Adomavicius and Tuzhilin (2005), Goldberg et al. (1992), and Resnick and Varian (1997), the work explores how personal data can be transformed into relevant recommendations using modern AI techniques. The study details the technological architecture, the authentication process via Google OAuth, the data extraction and processing pipeline, as well as the use of generative models to build recommendations. The results demonstrate that BookSuggest AI is capable of generating personalized suggestions that are justified and consistent with user preferences. In addition, a critical analysis of the system and a discussion of its potential, limitations, and contributions are included. The article complies with ABNT standards and the editorial standards of Revista Aracê.
Downloads
References
ADOMAVICIUS, G.; TUZHILIN, A. Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. IEEE Transactions on Knowledge and Data Engineering, v. 17, n. 6, p. 734–749, 2005.
BOENTE, Alfredo Nazareno Pereira. Inovação e interação humano-computador na era da inteligência artificial. Revista Aracê, v. 7, n. 10, 2025. DOI: 10.56238/arev7n10-149.
BOENTE, Alfredo Nazareno Pereira et al. Inovação no gerenciamento pessoal de saúde: um web service para documentação médica no contexto brasileiro. Revista ARACÊ, São José dos Pinhais, v. 7, n. 6, p. 33940–33965, 2025. DOI: https://doi.org/10.56238/arev7n6-284.
FERREIRA, Vinícius Marques da Silva. Inovação no gerenciamento pessoal de saúde: um web service para documentação médica no contexto brasileiro. Revista ARACÊ, 2025.
FERREIRA, Vinícius Marques da Silva. Automação e transformação digital: o papel da inteligência artificial no processamento de dados. Revista Aracê, v. 7, n. 10, 2025. DOI: 10.56238/arev7n10-149.
GOLDBERG, D. et al. Using collaborative filtering to weave an information tapestry.
Communications of the ACM, v. 35, n. 12, p. 61–70, 1992.
GOODREADS. Sobre Goodreads. Disponível em: https://www.goodreads.com/. Acesso em: 20 set. 2025.
GOOGLE. Google Sheets API Overview. Disponível em: ttps://developers.google.com/sheets/api. Acesso em: 20 set. 2025.
GOOGLE. Gemini: multimodal AI model. Disponível em: https://deepmind.google/technologies/gemini/. Acesso em: 20 set. 2025.
OPENAI. Introducing ChatGPT. Disponível em: https://openai.com/blog/chatgpt. Acesso em: 20 set. 2025.
RESNICK, P.; VARIAN, H. R. Recommender systems. Communications of the ACM, v. 40, n. 3, p. 56–58, 1997.
ROBERTSON, A.; VINCENT, J. Generative AI: what it is and why it matters. The Verge, 2023. Disponível em: https://www.theverge.com/. Acesso em: 20 set. 2025.
SKOOB. Skoob – A rede social para leitores do Brasil. Disponível em: https://www.skoob.com.br/. Acesso em: 20 set. 2025.
SANTOS, Ricardo Marciano dos. Proposição de um modelo de interação humano-computador baseado em lógica fuzzy para aferição de dados biofísicos. Rio de Janeiro, 2020. Trabalho de conclusão de curso
